摘要:
A SiON overcoat for use on magnetic media for magnetic recording. The SiON overcoat is deposited by pulsed DC sputtering while applying a negative DC bias. The SiON overcoat is especially useful on perpendicular magnetic recording media because of its ability to deposit thinly and evenly on a rough, granular high coercivity recording media while maintaining excellent corrosion protection properties. A SiON overcoat can be applied less than 3 nm thick while still maintaining excellent mechanical and corrosion protection. The overcoat also has a very high density and water contact angle.
摘要:
A perpendicular magnetic recording medium has a multilayer recording layer (RL) structure that includes a ferromagnetic intergranular exchange enhancement layer for mediating intergranular exchange coupling in the other ferromagnetic layers in the RL structure. The RL structure may be a multilayer of a first ferromagnetic layer (MAG1) of granular polycrystalline Co alloy with Ta-oxide, a second ferromagnetic layer (MAG2) of granular polycrystalline Co alloy with Si-oxide, and an oxide-free CoCr capping layer on top of and in contact with MAG2 for mediating intergranular exchange coupling in MAG1 and MAG2. The RL structure may also be a multilayer of an intergranular exchange enhancement interlayer (IL) in between two ferromagnetic layers, MAG1 and MAG2, each with reduced or no intergranular exchange coupling. Because the IL is in direct contact with both MAG1 and MAG2, it directly mediates intergranular exchange coupling in each of MAG1 and MAG2.
摘要:
A method is described for improving recording performance of a perpendicular media. The method includes using a dual oxide layer as a sublayer of a magnetic recording layer of the perpendicular media. The dual oxide sublayer improves recording performance, increases resistance to corrosion and allows for a thinner exchange break layer. The dual oxide layer generally includes oxides of tantalum and one of silicon or boron.
摘要:
A high performance perpendicular media with optimal exchange coupling between grains has improved thermal stability, writeability, and signal-to-noise ratio in a selected range of allowable intergranular exchange between the grains for high performing media. The writeability and byte error rate of a TaOx media are demonstrated to be substantially better than that of other designs.
摘要翻译:具有晶粒之间的最佳交换耦合的高性能垂直介质在高性能介质的晶粒之间允许的晶间交换的选定范围内提高了热稳定性,可写性和信噪比。 证明了TaO x x介质的可写性和字节错误率显着优于其他设计。
摘要:
A perpendicular magnetic recording disk has an improved recording layer of a granular CoPtCr-based ferromagnetic alloy with inter-granular material made up of one or more oxides of Cr and one or more oxides of one or more of a segregant of Si, Ta, Ti, B, Nb or Hf, wherein the amount of oxygen present in the recording layer is greater than about 22 atomic percent and less than about 35 atomic percent. The amount of oxygen in the recording layer is substantially greater than the amount required for the stoichiometric oxide or oxides of the segregant or segregants, and a substantial portion of the oxygen present in the recording layer is present in the inter-granular material. The recording layer exhibits high signal-to-noise ratio (SNR), a coercivity Hc greater than about 5000 Oe and a nucleation field Hn greater (more negative) than about −1500 Oe.
摘要:
A perpendicular magnetic recording disk has a granular Co-based ferromagnetic alloy recording layer (RL) with oxides of a selected metal (Ta or Nb) and a reduced-thickness exchange-break layer (EBL) between the RL and the soft magnetic underlayer (SUL). A perpendicular magnetic recording system that includes the disk, the write head and the read head, has an improved ability to write to the RL because of the reduced-thickness EBL.
摘要:
The invention includes a disk drive with a magnetic recording disk with an upper and lower sublayer in at least one magnetic layer of a laminated magnetic layer structure that includes a spacer layer that substantially decouples the magnetic layers. The lower sublayer has a lower boron content than the upper sublayer and a preferred embodiment is CoPtCrBTa. The upper sublayer is deposited onto the lower sublayer and is preferably CoPtCrB with a higher boron content than the lower sublayer. The composition of the lower sublayer gives it a very low moment with low intrinsic coercivity which would not be useful as a recording layer on its own. The upper sublayer is a higher moment alloy with high intrinsic coercivity. An embodiment of the invention includes a laminated magnetic layer structure which is antiferromagnetically coupled to a lower ferromagnetic layer.
摘要:
A perpendicular magnetic recording medium has an “exchange-spring” type magnetic recording layer (RL) formed of two ferromagnetic layers with substantially similar anisotropy fields that are ferromagnetically exchange-coupled by a nonmagnetic or weakly ferromagnetic coupling layer. Because the write head produces a larger magnetic field and larger field gradient at the upper portion of the RL, while the field strength decreases further inside the RL, the upper ferromagnetic layer can have a high anisotropy field. The high field and field gradient near the top of the RL, where the upper ferromagnetic layer is located, reverses the magnetization of the upper ferromagnetic layer, which then assists in the magnetization reversal of the lower ferromagnetic layer. Because both ferromagnetic layers in this exchange-spring type RL have a high anisotropy field, the thermal stability of the medium is not compromised. The medium shows improved writability, i.e., a low switching field, as well as lower intrinsic media noise, over a medium with a conventional single-layer RL.
摘要:
A magnetic recording medium has a laminated magnetic structure with at least three magnetic layers, wherein the magnetic layers have decreasing intrinsic coercivity H0 with distance from the write head. The write field at the center of each magnetic layer is greater than that layer's H0. The magnetic layers have different compositions and/or thicknesses and thereby different values of H0. The alloys used in the middle and upper magnetic layers are relatively “high-moment” alloys that would not ordinarily be used in magnetic recording media because they have relatively low S0NR, but the overall S0NR of the laminated magnetic structure is improved because of the effect of lamination. The middle and upper magnetic layers can be made substantially thinner, which enables the magnetic layers to be located closer to the write head, thereby exposing each of the magnetic layers to a higher write field.
摘要:
A laminated magnetic recording medium for data storage has an antiferromagnetically-coupled (AFC) layer and a single ferromagnetic layer spaced apart by a nonferromagnetic spacer layer. The AFC layer is formed as two ferromagnetic films antiferromagnetically coupled together across an antiferromagnetically coupling film that has a composition and thickness to induce antiferromagnetic coupling. In each of the two remanent magnetic states, the magnetic moments of the two antiferromagnetically-coupled films in the AFC layer are oriented antiparallel, and the magnetic moment of the single ferromagnetic layer and the greater-moment ferromagnetic film of the AFC layer are oriented parallel. The nonferromagnetic spacer layer between the AFC layer and the single ferromagnetic layer has a composition and thickness to prevent antiferromagnetic exchange coupling. The laminated medium has improved thermal stability and reduced intrinsic media noise.