摘要:
A user equipment (UE) includes a request receipt component, an interference component, and a grant/deny component. The request receipt component is configured to receive a first signal indicating a request to transmit to the UE from a first transmitting UE and to receive one or more additional signals indicating that one or more additional transmitting UEs are requesting to transmit to corresponding target UEs. The interference component identifies, based on a received power of the first signal and the one or more additional signals, one or more potentially incompatible UEs. The incompatible UEs may include at least one of the one or more additional transmitting UEs. The grant/deny component is configured to send a signal indicating a block on transmission by the one or more incompatible UEs.
摘要:
Embodiments of an evolved Node B (eNB) and methods for determining priority values for User Equipment (UE) are generally described herein. A method performed by circuitry of an eNB may include receiving, at the eNB, a usage report from the UE. The usage report may include information indicating a channel usage time and a transmission power of the UE. The method may include determining, using the usage report, a priority value for the UE. The method may include sending the priority value to the UE, wherein the UE is to utilize the priority value to perform distributed scheduling of device-to-device (D2D) communication over a D2D connection with a second UE.
摘要:
A distributed scheduling scheme for D2D communications is described in which D2D transmitter terminals send transmit requests and D2D receiver terminals respond with bandwidth grant messages if certain interference criteria are met. The described scheme may include a technique for more efficiently scheduling D2D links by having D2D receivers base their decisions as to whether to send a bandwidth grant message on whether or not a higher priority D2D receiver has transmitted a bandwidth grant message.
摘要:
Embodiments of a method for video decoding with application layer forward error correction in a wireless device are generally described herein. In some embodiments, the method receives a partial source symbol block that includes at least one encoded source symbol representing an original video frame. If the at least one encoded source symbol is systematic, the source symbol is decoded to recover a video frame. The video frame is provided to a video decoder that generates a portion of an original video signal from the recovered video frame.
摘要:
Embodiments of an Evolved Node-B (eNB) and methods for HARQ transmission are disclosed herein. The eNB may transmit, to a reduced-latency User Equipment (UE), an initial HARQ block and a diversity HARQ block for a reduced-latency data block. A sub-frame spacing between the transmissions of the HARQ blocks may be less than a sub-frame spacing used for transmissions of HARQ blocks to UEs not operating as reduced-latency UEs. The HARQ blocks for the reduced-latency data block may be transmitted in a reduced-latency region of time and frequency resources reserved for HARQ processes with reduced-latency UEs. In addition, HARQ blocks may be transmitted in time and frequency resources exclusive of the reduced-latency region to other UEs not operating as reduced-latency UEs.