摘要:
Medical diagnostic ultrasound stereo imaging is provided. A medical diagnostic ultrasound system operable to scan a body with ultrasound is also operable to generate a three dimensional stereoscopic view of the body. The video processing unit and/or display device create the stereoscopic display.
摘要:
Systems and methods which operate to identify interventional instruments and/or other objects in images are shown. Embodiments operate to extract relevant information regarding interventional instruments from a multi-dimensional volume for presenting the information to a user in near real-time with little or no user interaction. Objects may be identified by segmenting a multi-dimensional volume, identifying a putative object of interest in multiple multi-dimensional volume segments, and determining a position of the object of interest within the multi-dimensional volume using the putative object of interest segment identifications. Identification of objects of interest according to embodiments may be utilized to determine an image plane for use in displaying the objects within a generated image, to track the objects within the multi-dimensional volume, etc., such as for medical examination, interventional procedures, diagnosis treatment, and/or the like.
摘要:
Systems and methods which provide volume imaging by implementing survey and target imaging modes are shown. According to embodiments, a survey imaging mode is implemented to provide a volume image of a relatively large survey area. A target of interest is preferably identified within the survey area for use in a target imaging mode. Embodiments implement a target imaging mode to provide a volume image of a relatively small target area corresponding to the identified target of interest. The target imaging mode preferably adapts the beamforming, volume field of view, and/or other signal and image processing algorithms to the target area. In operation according to embodiments, the target imaging mode provides a volume image of a target area with improved volume rate and image quality.
摘要:
Medical diagnostic ultrasound stereo imaging is provided. A medical diagnostic ultrasound system operable to scan a body with ultrasound is also operable to generate a three dimensional stereoscopic view of the body. The video processing unit and/or display device create the stereoscopic display.
摘要:
Systems and methods which facilitate the correct placement of an instrument internal to an object aided by an overlay superimposed on an image are disclosed. Exemplary embodiments facilitate placement of a needle tip within a patient's body using on overlay superimposed on a sonographic image. A superimposed overlay of embodiments is created by monitoring a fixed point of an external portion of the instrument in relation to an imaging transducer. Superimposed overlays provided according to embodiments provide one or more graphical target designator and one or more graphical instrument designator which, when controlled to be disposed in a predetermined position, indicate proper placement of the instrument.
摘要:
Ultrasound imaging is synchronized with measurements. Generating three-dimensional representations is synchronized with measuring one or more parameters. For example, measurements are preformed based on navigating through a volume. The measurements are linked to the corresponding three-dimensional representations. As another example, the user selects a measurement from a graph. A three-dimensional representation of the volume associated with the selected measurement is presented.
摘要:
A volume is represented using high spatial resolution ultrasound data. By modulating B-mode data with Doppler or flow information, the spatial resolution or contrast of the B-mode data may be enhanced. The same set of ultrasound data is used for identifying a boundary, for placing the perspective position within the volume and rendering from the perspective position. The identification of the boundary and rendering are automated or performed by a processor. Ultrasound data may be used for generating three-dimensional fly-through representations, allowing for virtual endoscopy or other diagnostically useful views of structure or fluid flow channel. Virtual processes are not invasive, allow for more patient comfort, have selectable or different depths of focus, may allow for fly-through of different types of anatomy and may be used as a training tool.
摘要:
A fuzzy logic tissue/flow determination system receives echo amplitude, color amplitude, and velocity signals from an ultrasound imaging system. These values are applied to a set of fuzzy rules which quantify the amount by which the signal values vary from preset thresholds. The outputs of the fuzzy rules provide an indication of the plausibility that the echo signals represent a tissue or flow condition. The outputs from all the fuzzy rules are combined and de-fuzzified to produce a combined plausibility of the signals representing either a tissue or flow condition. The tissue/flow decision is made based on which plausibility is larger.
摘要:
Systems and methods which implement a plurality of different imaging signatures in generating an image frame are shown. A first imaging signature may be configured for providing relatively high quality images with respect to subsurface regions of living tissue, for example, whereas a second imaging signature may be configured for providing relatively high quality images with respect to interventional instruments inserted into living tissue at a steep angle. Image sub-frames generated using each such different imaging signature are blended to form a frame of the final image providing a relatively high quality image of various objects within the volume being imaged.
摘要:
Systems and methods which provide volume imaging by implementing survey and target imaging modes are shown. According to embodiments, a survey imaging mode is implemented to provide a volume image of a relatively large survey area. A target of interest is preferably identified within the survey area for use in a target imaging mode. Embodiments implement a target imaging mode to provide a volume image of a relatively small target area corresponding to the identified target of interest. The target imaging mode preferably adapts the beamforming, volume field of view, and/or other signal and image processing algorithms to the target area. In operation according to embodiments, the target imaging mode provides a volume image of a target area with improved volume rate and image quality.