Acoustic resonator device
    2.
    发明授权

    公开(公告)号:US11369960B2

    公开(公告)日:2022-06-28

    申请号:US16868092

    申请日:2020-05-06

    Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side. An acoustic energy management structure is then disposed over a first side of the bulk acoustic wave resonator. Next a third conductive material is disposed over a portion of the second conductive material that extends beyond the bulk acoustic wave resonator, wherein the third conductive material forms an interconnect extending above the acoustic energy management structure in a direction substantially perpendicular to the first surface of the substrate. Finally a portion of the second surface of the substrate is removed to expose a chemical mechanical connection at the first electrode at a second side of the bulk wave acoustic resonator. Devices formed thereby are also included.

    Assemblies Including an Acoustic Resonator Device and Methods of Forming

    公开(公告)号:US20230378928A1

    公开(公告)日:2023-11-23

    申请号:US18248128

    申请日:2021-10-29

    CPC classification number: H03H9/02015 H03H9/172 H03H9/1014

    Abstract: Assemblies including a bulk acoustic wave acoustic sensor die having a first and an opposing second major surface, the die including a piezoelectric structure, a first and a second electrode electrically connected to the piezoelectric structure, and an active surface on the first major surface of the die; a printed circuit board (PCB), the PCB having a first major surface and an opposing second major surface and including a slot spanning from the first major surface to the second major surface through the PCB; a first bond electrically and mechanically connecting the die to the PCB; and a second bond electrically and mechanically connecting the die to the PCB, wherein the first and the second bonds are located on either side of the slot through the PCB and the active surface of the die is above the slot in the PCB.

    ACOUSTIC RESONATOR DEVICE WITH CONTROLLED PLACEMENT OF FUNCTIONALIZATION MATERIAL

    公开(公告)号:US20220385262A1

    公开(公告)日:2022-12-01

    申请号:US17884888

    申请日:2022-08-10

    Abstract: A micro-electrical-mechanical system (MEMS) resonator device includes at least one functionalization material arranged over at least a central portion, but less than an entirety, of a top side electrode. For an active region exhibiting greatest sensitivity at a center point and reduced sensitivity along its periphery, omitting functionalization material over at least one peripheral portion of a resonator active region prevents analyte binding in regions of lowest sensitivity. The at least one functionalization material extends a maximum length in a range of from about 20% to about 95% of an active area length and extends a maximum width in a range of from about 50% to 100% of an active area width. Methods for fabricating MEMS resonator devices are also provided.

    ACOUSTIC RESONATOR DEVICE
    9.
    发明申请

    公开(公告)号:US20220274104A1

    公开(公告)日:2022-09-01

    申请号:US17749002

    申请日:2022-05-19

    Abstract: Methods of fabricating a bulk acoustic wave resonator structure for a fluidic device. The methods can include a first step of disposing a first conductive material over a portion of a first surface of a substrate to form at least a portion of a first electrode, the substrate having a second surface opposite the first surface. Then, a piezoelectric material may be disposed over the first electrode. Next, a second conductive material can be disposed over the piezoelectric material to form at least a portion of a second electrode. The second conductive material extends substantially parallel to the first surface of the substrate and the second conductive material at least partially extends over the first conductive material. The overlapping region of the first conductive material, the piezoelectric material, and the second conductive material form a bulk acoustic wave resonator, the bulk acoustic wave resonator having a first side and an opposing second side. An acoustic energy management structure is then disposed over a first side of the bulk acoustic wave resonator. Next a third conductive material is disposed over a portion of the second conductive material that extends beyond the bulk acoustic wave resonator, wherein the third conductive material forms an interconnect extending above the acoustic energy management structure in a direction substantially perpendicular to the first surface of the substrate. Finally a portion of the second surface of the substrate is removed to expose a chemical mechanical connection at the first electrode at a second side of the bulk wave acoustic resonator. Devices formed thereby are also included.

Patent Agency Ranking