Abstract:
Systems, methods and apparatus are disclosed, including a light collector having a plurality of focusing elements and a plurality of light redirecting features that is optically coupled to one or more photovoltaic (PV) cells. In one aspect, the light collector includes half-cylinder shaped lenses that can focus light incident at various angles onto an elongate v-groove in the light guide such that a first portion of the incident light is diverted to one or more PV cells and a second portion of the incident light is transmitted through the light collector to provide illumination.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for providing a compact, low-sensor count scanning display that is capable of both displaying graphical content and of capturing images of objects placed on or above the scanning display. Various implementations are discussed, including raster scan, line scan, and compressive sampling version.
Abstract:
Methods and systems for providing a light device that can emit light and sense light are disclosed. In one embodiment, a lighting device includes a light guide having a planar first surface, the light guide configured such that at least some ambient light enters the light guide through the first surface and propagates therein, and at least one light detector disposed along an edge of the light guide, the at least one detector optically coupled to the light guide to receive light propagating therein. The light detector can be configured to produce a control signal. In some embodiments, the lighting device also includes at least one light turning feature disposed on the first surface, the at least one light turning feature configured to direct light incident into the light guide through the first surface.
Abstract:
This disclosure provides systems, methods and apparatus that can generate PV power and simultaneously provide artificial lighting. The devices disclosed herein include a first optical structure having a plurality of focusing elements that can collect and focus ambient light onto a first set of light redirecting elements that is optically coupled to at least photovoltaic (PV) cell. The devices also include at least one illumination source that is optically coupled to a first edge of a second optical structure including a second set of light redirecting elements that can direct light from the at least one illumination source out of the device to provide artificial lighting. The at least one photovoltaic cell is coupled to a second edge of the second optical structure.
Abstract:
This disclosure provides systems, methods and apparatus that can generate PV power and simultaneously provide artificial lighting. The devices disclosed herein include a first optical structure having a plurality of focusing elements that can collect and focus ambient light onto a first set of light redirecting elements that is optically coupled to one or more photovoltaic (PV) cells. The devices also include one or more illumination sources that are optically coupled to a light guide including a second set of light redirecting elements that can direct light from the one or more illumination sources out of the device to provide artificial lighting. The devices further include a second optical structure disposed below the first optical structure such that the one or more illumination sources and the one or more PV cells are disposed along the edges of the first or the second optical structure.
Abstract:
This disclosure provides systems, methods and apparatus for imaging. In one aspect, the imaging system can include a light sensor, a light guide, an optical pattern generator, and a processor. The light guide can include light turning features configured to receive ambient light and to direct the ambient light out through an output surface of the light guide to the light sensor. The optical pattern generator can be configured to generate a light intensity pattern upon the passage of the ambient light through the optical pattern generator and project the light intensity pattern onto the light sensor. The processor can be configured to construct an image based on the light intensity pattern.