摘要:
A system including an optical waveguide having a length extending from an optical interrogator at a first end, a plurality of light-modulating sensor nodes disposed at predetermined locations along the length of the optical waveguide, and (in some embodiments) a plurality of first beam splitters at each of the predetermined locations along the length of the optical waveguide, each of the first beam splitters configured to direct a portion of an optical signal from the optical interrogator to one of the plurality of light-modulating sensor nodes along an optical waveguide path, and return a reflected optical signal to the optical interrogator in an opposite direction along the same optical waveguide path.
摘要:
A method and apparatus for authenticating a radar return signal include: generating an outgoing radar beam; generating a pair of entangled photons comprising a signal photon and an idler photon; combining the signal photon with the outgoing radar beam to generate a combined beam; sending the combined beam towards a target; receiving a return beam; detecting the signal photon from the return beam by a quantum illumination receiver; and making a joint detection with the idler signal.
摘要:
A system including an optical waveguide having a length extending from an optical interrogator at a first end, a plurality of light-modulating sensor nodes disposed at predetermined locations along the length of the optical waveguide, each of the plurality of light-modulating sensor nodes having an optical modulator for modulating an optical signal propagating from the optical interrogator in the optical waveguide, and for returning the modulated optical signal to the optical interrogator in an opposite direction along the same optical waveguide path.
摘要:
A method and apparatus for authenticating a radar return signal include: generating an outgoing radar beam; generating a pair of entangled photons comprising a signal photon and an idler photon; combining the signal photon with the outgoing radar beam to generate a combined beam; sending the combined beam towards a target; receiving a return beam; detecting the signal photon from the return beam by a quantum illumination receiver; and making a joint detection with the idler signal.
摘要:
A method and apparatus for authenticating a radar return signal include: generating an outgoing radar beam; generating a pair of entangled photons comprising a signal photon and an idler photon; combining the signal photon with the outgoing radar beam to generate a combined beam; sending the combined beam towards a target; receiving a return beam; detecting the signal photon from the return beam by a quantum illumination receiver; and making a joint detection with the idler photon.
摘要:
A method and apparatus for authenticating a radar return signal include: generating an outgoing radar beam; generating a pair of entangled photons comprising a signal photon and an idler photon; combining the signal photon with the outgoing radar beam to generate a combined beam; sending the combined beam towards a target; receiving a return beam; detecting the signal photon from the return beam by a quantum illumination receiver; and making a joint detection with the idler photon.
摘要:
A system including an optical waveguide having a length extending from an optical interrogator at a first end, a plurality of light-modulating sensor nodes disposed at predetermined locations along the length of the optical waveguide, each of the plurality of light-modulating sensor nodes having an optical modulator for modulating an optical signal propagating from the optical interrogator in the optical waveguide, and for returning the modulated optical signal to the optical interrogator in an opposite direction along the same optical waveguide path.
摘要:
A system including an optical waveguide having a length extending from an optical interrogator at a first end, a plurality of light-modulating sensor nodes disposed at predetermined locations along the length of the optical waveguide, and (in some embodiments) a plurality of first beam splitters at each of the predetermined locations along the length of the optical waveguide, each of the first beam splitters configured to direct a portion of an optical signal from the optical interrogator to one of the plurality of light-modulating sensor nodes along an optical waveguide path, and return a reflected optical signal to the optical interrogator in an opposite direction along the same optical waveguide path.
摘要:
A method for range finding of a target including: generating a first photon and a second photon identical to the first photon; transmitting the first photon towards the target and delaying the second photon by a time delay; receiving the first photon reflected from the target and the delayed second photon; interacting the reflected first photon and the delayed second photon to produce HOM interference; detecting photo-statistics at an output of the HOM interference; when the two photons are output at the same output port, repeating the above processes; when the reflected first single photon and the delayed second single photon are output at different output ports, changing the time delay and repeating the above processes; repeating the above processes for a number of times to arrive at a final estimate for a value of the time delay corresponding to the final estimate of the target range.
摘要:
A method for range finding of a target including: generating a first photon and a second photon identical to the first photon; transmitting the first photon towards the target and delaying the second photon by a time delay; receiving the first photon reflected from the target and the delayed second photon; interacting the reflected first photon and the delayed second photon to produce HOM interference; detecting photo-statistics at an output of the HOM interference; when the two photons are output at the same output port, repeating the above processes; when the reflected first single photon and the delayed second single photon are output at different output ports, changing the time delay and repeating the above processes; repeating the above processes for a number of times to arrive at a final estimate for a value of the time delay corresponding to the final estimate of the target range.