Abstract:
A system includes a power converter configured to convert input power into output power. The power converter includes first and second converter bridges, where each converter bridge includes multiple transistors. The system also includes a zero-voltage switching (ZVS) assistance circuit having first and second inverse controlled rectifiers (ICRs). Each of the first and second ICRs is configured to provide current to the transistors in the first and second converter bridges. The system further includes a controller configured to control operation of the first and second converter bridges and the ZVS assistance circuit. The controller could include a phase-shift modulation (PSM) controller configured to control the converter bridges and a pulse width modulation (PWM) controller configured to control the ZVS assistance circuit. The PWM controller can be configured to apply pre-shaped voltages to transistors in regulators of the ICRs to enable substantially zero-loss turn-off commutation of the transistors in the regulators.
Abstract:
An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
Abstract:
An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
Abstract:
A system includes a power converter configured to convert input power into output power. The power converter includes first and second converter bridges, where each converter bridge includes multiple transistors. The system also includes a zero-voltage switching (ZVS) assistance circuit having first and second inverse controlled rectifiers (ICRs). Each of the first and second ICRs is configured to provide current to the transistors in the first and second converter bridges. The system further includes a controller configured to control operation of the first and second converter bridges and the ZVS assistance circuit. The controller could include a phase-shift modulation (PSM) controller configured to control the converter bridges and a pulse width modulation (PWM) controller configured to control the ZVS assistance circuit. The PWM controller can be configured to apply pre-shaped voltages to transistors in regulators of the ICRs to enable substantially zero-loss turn-off commutation of the transistors in the regulators.