Abstract:
An electric motor assembly includes a bearing assembly including a rotating component and at least one stationary component. The electric motor assembly also includes an impeller coupled to the rotating component. The impeller includes an inlet and an outlet and is configured to direct a fluid between the inlet and the outlet. The electric motor assembly also includes a rotor assembly directly coupled to the impeller. A fluid flow channel is defined between the rotating component and the at least one stationary component. The flow channel includes a first end proximate the impeller outlet and a second end proximate the impeller inlet.
Abstract:
A hydrodynamic bearing assembly includes a first member including a first engaging surface. The first member is stationary in a non-operating mode of the bearing assembly and rotates about an axis in an operational mode of the bearing assembly. The first member includes a first bore and a shaft positioned within the first bore and including an end surface. The hydrodynamic bearing assembly also includes a second member including a second bore and a second engaging surface positioned adjacent the first engaging surface. The second member is stationary in both the non-operating mode and the operational mode of the bearing assembly. The hydrodynamic bearing assembly further includes a spacer member positioned within the second bore and is configured to engage the first member to define a first gap between the first engaging surface and the second engaging surface in the non-operational mode.
Abstract:
An electric motor assembly includes a stator assembly and a rotor assembly positioned adjacent the stator assembly to define an axial gap therebetween. The stator assembly is configured to induce a first axial force on the rotor assembly. The electric motor assembly also includes an impeller directly coupled to the rotor assembly opposite the stator assembly such that the rotor assembly and the impeller are configured to rotate about an axis. A fluid channeled by the impeller induces a second axial force on the impeller. The electric motor assembly further includes a hydrodynamic bearing assembly including a rotating member coupled to the rotor assembly and stationary member at least partially circumscribing the rotating member such that rotation of the rotating member with respect to the stationary member is configured to induce a third axial force on the rotor assembly.
Abstract:
A hydrodynamic bearing assembly includes a first member including a first engaging surface. The first member is stationary in a non-operating mode of the bearing assembly and rotates about an axis in an operational mode of the bearing assembly. The hydrodynamic bearing assembly also includes a second member including a bore and a second engaging surface positioned adjacent the first engaging surface. The second member is stationary in both the non-operating mode and the operational mode of the bearing assembly. The hydrodynamic bearing assembly further includes a spacer member positioned within the bore and is configured to engage the first member to define a first gap between the first engaging surface and the second engaging surface in the non-operational mode.
Abstract:
A hydrodynamic bearing assembly includes a first stationary component, a shaft coupled to the first stationary component, and a second stationary component coupled to the shaft opposite the first stationary component. The hydrodynamic bearing assembly also includes a rotating component coupled to the shaft between the first stationary component and the second stationary component. The rotating component includes a first end surface including a first diameter and an opposing second end surface including a second diameter that is greater than the first diameter.
Abstract:
An end cap for use with a stator assembly is provided. The end cap includes a tooth portion, a yoke portion, and a lip. The tooth portion includes a first end and an opposite second end and the yoke portion is formed at the first end of the tooth portion. The yoke portion includes at least one arm that extends from the tooth portion. The lip is defined along at least one of the tooth portion and the at least one arm portion.
Abstract:
A fluid circulating assembly includes an electrical machine having a rotor assembly, a stator assembly, and a housing. The housing includes an annular center section and at least two extension portions extending radially outward from the annular center section of the housing. The fluid circulating assembly also includes a controller assembly coupled to the housing. The said controller assembly is positioned radially outward from the stator assembly and located in at least one of the at least two extension portions.
Abstract:
A client computing device comprising an indicia sensor and a processor coupled to the indicia sensor is described. The processor is configured to receive identification data for an original motor through the indicia sensor, identify a replacement motor based at least in part on the identification data, and identify a local seller of the replacement motor based at least in part on a first location associated with the client computing device and a second location associated with the local seller.
Abstract:
A blower assembly includes a fan including a front plate that defines a fan inlet. The blower assembly also includes an inlet plate positioned adjacent the fan such that the inlet plate and the front plate define a cavity therebetween that extends circumferentially about the fan inlet. A motor is coupled to the fan and to the inlet plate and configured to rotate about the rotational axis. The motor is positioned within the cavity.
Abstract:
A pump includes a housing including a first portion thereof defining opposed parallel spaced apart internal and exterior generally planar surfaces. The pump also includes a first impeller rotatably secured to the housing and positioned within the housing. The pump also includes a first axial flux motor connected to the first impeller and at least partially positioned within the housing. The first axial flux motor includes a first motor rotor fixedly secured to the first impeller. The first motor rotor has a generally planar surface thereof positioned adjacent to and parallel to the internal generally planar surface of the first portion of the housing. The first axial flux motor includes a first motor stator fixedly secured to the housing. The first motor stator has a generally planar surface thereof positioned adjacent to and parallel to the external generally planar surface of the first portion of the housing.