Abstract:
A motor controller is provided. The motor controller is coupled to an efficiency indicator device and to a motor that is coupled to a fluid movement device. The motor controller includes a processor. The motor controller is configured to determine a fluid flow amount representing an amount of fluid moved by the fluid movement device during a predefined time period. Additionally, the motor controller is configured to determine a power usage amount representing an amount of power used by at least the fluid movement device and the motor in association with the fluid flow amount, generate an efficiency report associated with at least the fluid flow amount and the power usage amount, and transmit the efficiency report to the efficiency indicator device for presentation thereon.
Abstract:
A control system for a motor includes an inverter coupled to the motor. The control system further includes a microcontroller coupled to the inverter. The microcontroller includes a processor programmed to measure an input voltage and acquire a back EMF voltage of the motor. The processor is also programmed to control the inverter to regulate the motor voltage based on the input voltage and the back EMF voltage to facilitate controlling the motor.
Abstract:
A housing for coupling to a motor having an axis of rotation is provided. The housing includes an end cap having an outer surface and an inner surface. The housing also includes a plurality of first heat fins coupled to the outer surface. Each first heat fin of the plurality of first heat fins includes a first portion extending radially from the axis of rotation. In addition, the housing includes a second portion coupled to first portion and extending parallel to the axis of rotation. The housing further includes a second heat fin coupled to the second portion.
Abstract:
A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.
Abstract:
An electric motor controller for controlling an electric motor and methods of determining a loss of phase condition for at least one phase of three-phase input power provided to an electric motor controller are provided. The controller is configured to obtain phase sample data representing an input power electrical characteristic for at least one phase of three-phase power received by the controller and receive direct current (DC) bus data representing a measured DC bus electrical characteristic. The controller is also configured to calculate a ratio between the phase sample data and the DC bus data, and determine that a loss of phase condition exists for a phase of the three-phase power when the ratio exceeds a predetermined threshold.
Abstract:
A housing for coupling to a motor having an axis of rotation is provided. The housing includes an end cap having an outer surface and an inner surface. The housing also includes a plurality of first heat fins coupled to the outer surface. Each first heat fin of the plurality of first heat fins includes a first portion extending radially from the axis of rotation. In addition, the housing includes a second portion coupled to first portion and extending parallel to the axis of rotation. The housing further includes a second heat fin coupled to the second portion.
Abstract:
An electric motor controller for controlling an electric motor and methods of determining a loss of phase condition for at least one phase of three-phase input power provided to an electric motor controller are provided. The controller is configured to obtain phase sample data representing an input power electrical characteristic for at least one phase of three-phase power received by the controller and receive direct current (DC) bus data representing a measured DC bus electrical characteristic. The controller is also configured to calculate a ratio between the phase sample data and the DC bus data, and determine that a loss of phase condition exists for a phase of the three-phase power when the ratio exceeds a predetermined threshold.
Abstract:
A motor controller is provided. The motor controller is coupled to an efficiency indicator device and to a motor that is coupled to a fluid movement device. The motor controller includes a processor. The motor controller is configured to determine a fluid flow amount representing an amount of fluid moved by the fluid movement device during a predefined time period. Additionally, the motor controller is configured to determine a power usage amount representing an amount of power used by at least the fluid movement device and the motor in association with the fluid flow amount, generate an efficiency report associated with at least the fluid flow amount and the power usage amount, and transmit the efficiency report to the efficiency indicator device for presentation thereon.
Abstract:
A method for monitoring input power to an electronically commutated motor (ECM) is described. The method includes determining, with a processing device, an average input current to the motor, the average input current based on a voltage drop across a shunt resistor in series with the motor, measuring an average input voltage applied to the motor utilizing the processing device, multiplying the average input current by the average voltage to determine an approximate input power, and communicating the average input power to an external interface.