Abstract:
The present invention provides, inter alia, a method for cell-specific modulation of a target antigen. The method comprises contacting a target cell having the target antigen on the surface of the target cell with: (a) first multi-specific antigen-binding polypeptide comprising: (i) a cell-specific antigen binding domain (C1), (ii) a target antigen binding domain (T1); and (b) a second multi-specific antigen-binding polypeptide comprising: (i) a cell-specific antigen binding domain (C2), (ii) a target antigen binding domain (T2); wherein C1 and C2 interact with the same cell-specific antigen, and the cell-specific antigen and the target antigen are on the same target cell. Pharmaceutical compositions and kits thereof are also included in the present invention.
Abstract:
The invention provides a method for enriching the level of VEGF-A121 isoform in a sample by selectively removing the VEGF-A165 isoform from the sample using a neuropilin-1 pull-down procedure, then determining the total amount of VEGF-A remaining afterward. The invention provides methods of treating a patient suffering from a disease which may benefit from the administration of a VEGF antagonist by determining the level or ratio of VEGF-A121 in the patient's circulation. Methods of diagnosis, prognosis, monitoring, and patient stratification are also provided.
Abstract:
The invention provides a method for determining the level of VEGF-A121 isoform in a sample by selectively removing the VEGF-A165 isoform from the sample using a neuropilin-1 pull-down procedure, then determining the total amount of VEGF-A remaining afterward. The invention provides methods of treating a patient suffering from a disease which may benefit from the administration of a VEGF antagonist by determining the level of VEGF-A121 in the patient's circulation. Methods of diagnosis, prognosis, monitoring, and patient stratification are also provided.
Abstract:
The present invention provides multispecific antigen-binding molecules and uses thereof. The multispecific antigen-binding molecules comprise a first antigen-binding domain that specifically binds a target molecule, and a second antigen-binding domain that specifically binds an internalizing effector protein. The multispecific antigen-binding molecules of the present invention can, in some embodiments, be bispecific antibodies that are capable of binding both a target molecule and an internalizing effector protein. In certain embodiments of the invention, the simultaneous binding of the target molecule and the internalizing effector protein by the multispecific antigen-binding molecule of the present invention results in the attenuation of the activity of the target molecule to a greater extent than the binding of the target molecule alone. In other embodiments of the invention, the target molecule is a tumor associated antigen, and the simultaneous binding of the tumor associated antigen and the internalizing effector protein by the multispecific antigen-binding molecule of the present invention causes or facilitates the targeted killing of tumor cells.
Abstract:
The invention provides a method for enriching the level of VEGF-A121 isoform in a sample by selectively removing the VEGF-A165 isoform from the sample using a neuropilin-1 pull-down procedure, then determining the total amount of VEGF-A remaining afterward. The invention provides methods of treating a patient suffering from a disease which may benefit from the administration of a VEGF antagonist by determining the level or ratio of VEGF-A121 in the patient's circulation. Methods of diagnosis, prognosis, monitoring, and patient stratification are also provided.