Abstract:
A dual-mode ultrasound system provides real-time imaging and therapy delivery using the same transducer elements of a transducer array. The system may use a multi-channel driver to drive the elements of the array. The system uses a real-time monitoring and feedback image control of the therapy based on imaging data acquired using the dual-mode ultrasound array (DMUA) of transducer elements. Further, for example, multi-modal coded excitation may be used in both imaging and therapy modes. Still further, for example, adaptive, real-time refocusing for improved imaging and therapy can be achieved using, for example, array directivity vectors obtained from DMUA pulse-echo data.
Abstract:
Ultrasound methods provide for the motion tracking of both vessel wall motion and blood flow (e.g., with use of high frame rate ultrasound pulse echo data and speckle tracking both wall motion and flow can be tracked simultaneously). Ultrasound systems provide for the motion tracking of both vessel wall motion and blood flow (e.g., with use of high frame rate ultrasound pulse echo data and speckle tracking both wall motion and flow can be tracked simultaneously).
Abstract:
Ultrasound methods and/or systems provide for the motion tracking of both vessel wall motion and blood flow (e.g., with use of high frame rate ultrasound pulse echo data and speckle tracking both wall motion and flow can be tracked simultaneously).
Abstract:
A dual-mode ultrasound system provides real-time imaging and therapy delivery using the same transducer elements of a transducer array. The system may use a multichannel driver to drive the elements of the array. The system uses a real-time monitoring and feedback image control of the therapy based on imaging data acquired using the dual-mode ultrasound array (DMUA) of transducer elements. Further, for example, multimodal coded excitation may be used in both imaging and therapy modes. Still further, for example, adaptive, real-time refocusing for improved imaging and therapy can be achieved using, for example, array directivity vectors obtained from DMUA pulse-echo data.
Abstract:
Ultrasound adaptive imaging methods and/or systems provide for modification of waveform generation to drive a plurality of transducer elements. The modification may be based on at least one of contrast ratio or signal to noise ratio as determined with respect to control points in a region of interest. Further, image reconstruction may be performed upon separating, from pulse echo data received, at least a portion thereof received at each ultrasound transducer element from the region of interest in response to the delivered ultrasound energy corresponding to a single frequency of one or more image frequencies within a transducer apparatus bandwidth. The image reconstructed from the separated pulse-echo data corresponding to the single frequency of the one or more image frequencies may be used alone or combined with like image data (e.g., to provide an image representative of one or more properties in the region of interest).
Abstract:
A dual-mode ultrasound system provides real-time imaging and therapy delivery using the same transducer elements of a transducer array. The system may use a multi-channel driver to drive the elements of the array. The system uses a real-time monitoring and feedback image control of the therapy based on imaging data acquired using the dual-mode ultrasound array (DMUA) of transducer elements. Further, for example, multi-modal coded excitation may be used in both imaging and therapy modes. Still further, for example, adaptive, real-time refocusing for improved imaging and therapy can be achieved using, for example, array directivity vectors obtained from DMUA pulse-echo data.
Abstract:
Ultrasound adaptive imaging methods and/or systems provide for modification of waveform generation to drive a plurality of transducer elements. The modification may be based on at least one of contrast ratio or signal to noise ratio as determined with respect to control points in a region of interest. Further, image reconstruction may be performed upon separating, from pulse echo data received, at least a portion thereof received at each ultrasound transducer element from the region of interest in response to the delivered ultrasound energy corresponding to a single frequency of one or more image frequencies within a transducer apparatus bandwidth. The image reconstructed from the separated pulse-echo data corresponding to the single frequency of the one or more image frequencies may be used alone or combined with like image data (e.g., to provide an image representative of one or more properties in the region of interest).
Abstract:
A dual-mode ultrasound system provides real-time imaging and therapy delivery using the same transducer elements of a transducer array. The system may use a multi-channel driver to drive the elements of the array. The system uses a real-time monitoring and feedback image control of the therapy based on imaging data acquired using the dual-mode ultrasound array (DMUA) of transducer elements. Further, for example, multi-modal coded excitation may be used in both imaging and therapy modes. Still further, for example, adaptive, real-time refocusing for improved imaging and therapy can be achieved using, for example, array directivity vectors obtained from DMUA pulse-echo data.