Abstract:
The present disclosure relates to a single-pot process for the preparation of a shape controlled pro-catalyst. The process comprises the steps of i. reacting at least one alkanol with magnesium metal using at least one modifier and optionally, at least one solvent resulting in evolution of hydrogen gas, increasing the evolution of the hydrogen gas in a controlled manner by increasing the temperature in a graded manner to 100 ° C. to obtain a mass, and ii. subjecting the mass to drying to obtain a free flowing procatalyst.
Abstract:
The present disclosure provides a heterogeneous Ziegler-Natta catalyst system to be used in the preparation of ultra-high molecular weight polymers (UHMWP). The system includes at least one procatalyst, at least one co-catalyst, at least one hydrocarbon medium and at least one external donor, wherein the ratio of elemental magnesium to elemental titanium to halide, in the procatalyst, is 1:1.3:3.7; the ratio of elemental aluminum, present in the co-catalyst to elemental titanium, present in the procatalyst, ranges between 6:1 and 12:1; and the ratio of elemental silicon, present in the external donor to elemental titanium, present in the procatalyst, ranges between 1:10 and 10:1. The present disclosure also provides a process for preparation of UHMWPE using the heterogeneous Ziegler-Natta catalyst system of the present disclosure.
Abstract:
The present disclosure relates to a polyolefin characterized by melt flow index ranging from 1 and 100 g/10 min; tacticity ranging from 97 and 99.5%; and porosity ranging from 0.1 to 0.4 cm3/g. The present disclosure also relates to a simple and economic method for preparing the polyolefin.
Abstract:
The present disclosure relates to a transition metal based pro-catalyst represented by Formula I: wherein, the substituents have the meaning as defined in the specification. The present disclosure also relates to a process for preparing the transition metal based pro-catalyst represented by Formula I and the catalyst composition obtained therefrom. Further, the present disclosure relates to a process for polymerizing olefins by employing the catalyst composition comprising the transition metal based pro-catalyst represented by Formula I.
Abstract:
The present disclosure relates to a single-pot multi step process for the preparation of a shape controlled pro-catalyst. The process comprises the steps of: i. reacting magnesium metal and at least one alkanol to obtain spheroidal magnesium alkoxide; ii. treating the spheroidal magnesium alkoxide with at least one transition metal tetrahalide, at least one organic modifier, and optionally, at least one in-organic modifier in the presence of at least one solvent to obtain a reaction mixture; iii. cooling, settling the reaction mixture and decanting the supernatant; iv. adding at least one transition metal tetrahalide, at least one solvent and optionally, at least one organic or inorganic modifier; and v. iterating steps (iii) and (iv) to obtain the shape controlled pro-catalyst.
Abstract:
The present disclosure provides a Ziegler-Natta catalyst composition for preparing polymers of ethylene monomers having ultrahigh molecular weight, said composition comprises (i) a pro-catalyst component containing a reaction product of a magnesium containing compound and a titanium containing compound, characterized in that said pro-catalyst component comprises magnesium, titanium and chlorine in an amount ranging between 15 and 18 mole %; 20 and 23 mole %; and 60 and 64 mole %, respectively, all proportions being with respect to the total weight of the Ziegler-Natta catalyst composition; (ii) a co-catalyst component; and (iii) at least one external electron donor compound selected from the group of organosilane compounds having the general formula (I), wherein R1, R2, R3 and R4 are all the same or all are different, or some are the same, and are individually selected from the group consisting of linear or branched alkyl groups, cycloalkyl groups, aryl groups, alkoxy and aryloxy groups.
Abstract:
The present disclosure relates to a single-pot multi step process for the preparation of a shape controlled pro-catalyst. The process comprises the steps of: i. reacting magnesium metal and at least one alkanol to obtain spheroidal magnesium alkoxide; ii. treating the spheroidal magnesium alkoxide with at least one transition metal tetrahalide, at least one organic modifier, and optionally, at least one in-organic modifier in the presence of at least one solvent to obtain a reaction mixture; iii. cooling, settling the reaction mixture and decanting the supernatant; iv. adding at least one transition metal tetrahalide, at least one solvent and optionally, at least one organic or inorganic modifier; and v. iterating steps (iii) and (iv) to obtain the shape controlled pro-catalyst.
Abstract:
The present disclosure provides a heterogeneous Ziegler-Natta catalyst system to be used in the preparation of ultra-high molecular weight polymers (UHMWP). The system includes at least one procatalyst, at least one co-catalyst, at least one hydrocarbon medium and at least one external donor, wherein the ratio of elemental magnesium to elemental titanium to halide, in the procatalyst, is 1:1.3:3.7; the ratio of elemental aluminum, present in the co-catalyst to elemental titanium, present in the procatalyst, ranges between 6:1 and 12:1; and the ratio of elemental silicon, present in the external donor to elemental titanium, present in the procatalyst, ranges between 1:10 and 10:1. The present disclosure also provides a process for preparation of UHMWPE using the heterogeneous Ziegler-Natta catalyst system of the present disclosure.
Abstract:
The present disclosure relates to a polyolefin characterized by melt flow index ranging from 1 and 100 g/10 min; tacticity ranging from 97 and 99.5%; and porosity ranging from 0.1 to 0.4 cm3/g. The present disclosure also relates to a simple and economic method for preparing the polyolefin.
Abstract:
The present disclosure relates to a single-pot process for the preparation of a shape controlled pro-catalyst. The process comprises the steps of i. reacting at least one alkanol with magnesium metal using at least one modifier and optionally, at least one solvent resulting in evolution of hydrogen gas, increasing the evolution of the hydrogen gas in a controlled manner by increasing the temperature in a graded manner to 100° C. to obtain a mass, and ii. subjecting the mass to drying to obtain a free flowing procatalyst.