Abstract:
A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA0, WLB0, WLB1, WLA1, WLA2. Further, a pitch d2 between WLA-WLA and between WLB-WLB is made smaller than a pitch d1 between WLA-WLB. As such, the word lines of an identical port are disposed at the pitch d2 on one of both sides of a certain word line and the word lines of different ports are disposed at the pitch d1 on the other.
Abstract:
A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA0, WLB0, WLB1, WLA1, WLA2. Further, a pitch d2 between WLA-WLA and between WLB-WLB is made smaller than a pitch d1 between WLA-WLB. As such, the word lines of an identical port are disposed at the pitch d2 on one of both sides of a certain word line and the word lines of different ports are disposed at the pitch d1 on the other.
Abstract:
A semiconductor storage device provided can increase a write margin and suppress increase of a chip area. The semiconductor storage device includes plural memory cells arranged in a matrix; plural bit-line pairs arranged corresponding to each column of the memory cells; a write driver circuit which transmits data to a bit-line pair of a selected column according to write data; and a write assist circuit which drives a bit line on a low potential side of the bit-line pair of a selected column to a negative voltage level. The write assist circuit includes first signal wiring; a first driver circuit which drives the first signal wiring according to a control signal; and second signal wiring which is coupled to the bit line on the low-potential side and generates a negative voltage by the driving of the first driver circuit, based on inter-wire coupling capacitance with the first signal wiring.
Abstract:
A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA0, WLB0, WLB1, WLA1, WLA2. Further, a pitch d2 between WLA-WLA and between WLB-WLB is made smaller than a pitch d1 between WLA-WLB. As such, the word lines of an identical port are disposed at the pitch d2 on one of both sides of a certain word line and the word lines of different ports are disposed at the pitch d1 on the other.
Abstract:
A semiconductor storage device provided can increase a write margin and suppress increase of a chip area. The semiconductor storage device includes plural memory cells arranged in a matrix; plural bit-line pairs arranged corresponding to each column of the memory cells; a write driver circuit which transmits data to a bit-line pair of a selected column according to write data; and a write assist circuit which drives a bit line on a low potential side of the bit-line pair of a selected column to a negative voltage level. The write assist circuit includes first signal wiring; a first driver circuit which drives the first signal wiring according to a control signal; and second signal wiring which is coupled to the bit line on the low-potential side and generates a negative voltage by the driving of the first driver circuit, based on inter-wire coupling capacitance with the first signal wiring.
Abstract:
A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA0, WLB0, WLB1, WLA1, WLA2. Further, a pitch d2 between WLA-WLA and between WLB-WLB is made smaller than a pitch d1 between WLA-WLB. As such, the word lines of an identical port are disposed at the pitch d2 on one of both sides of a certain word line and the word lines of different ports are disposed at the pitch d1 on the other.
Abstract:
A semiconductor storage device provided can increase a write margin and suppress increase of a chip area. The semiconductor storage device includes plural memory cells arranged in a matrix; plural bit-line pairs arranged corresponding to each column of the memory cells; a write driver circuit which transmits data to a bit-line pair of a selected column according to write data; and a write assist circuit which drives a bit line on a low potential side of the bit-line pair of a selected column to a negative voltage level. The write assist circuit includes first signal wiring; a first driver circuit which drives the first signal wiring according to a control signal; and second signal wiring which is coupled to the bit line on the low-potential side and generates a negative voltage by the driving of the first driver circuit, based on inter-wire coupling capacitance with the first signal wiring.
Abstract:
A semiconductor device having a high degree of freedom of layout has a first part AR1, in which a plurality of p-type wells PW and n-type wells NW are alternately arranged to be adjacent to each other along an X-axis direction. A common power feeding region (ARP2) for the plurality of wells PW is arranged on one side so as to interpose the AR1 in a Y-axis direction, and a common power feeding region (ARN2) for the plurality of wells NW is arranged on the other side. In the power feeding region (ARP2) for the PW wells, a p+-type power-feeding diffusion layer P+(DFW) having an elongate shape extending in the X-axis direction is formed. A plurality of gate layers GT extending in the X-axis direction to cross the boundary between the PW and NW wells are arranged in the AR1, and a plurality of MIS transistors are correspondingly formed.
Abstract:
A semiconductor device enabling expansion of a noise margin. For example, in a memory area in which each memory cell MC is coupled to a word line WLA for a first port and a word line WLB for a second port, and a plurality of memory cells MC are disposed in a matrix shape, each word line is disposed in the order of WLA0, WLB0, WLB1, WLA1, WLA2. Further, a pitch d2 between WLA-WLA and between WLB-WLB is made smaller than a pitch d1 between WLA-WLB. As such, the word lines of an identical port are disposed at the pitch d2 on one of both sides of a certain word line and the word lines of different ports are disposed at the pitch d1 on the other.
Abstract:
A semiconductor device having a high degree of freedom of layout has a first part AR1, in which a plurality of p-type wells PW and n-type wells NW are alternately arranged to be adjacent to each other along an X-axis direction. A common power feeding region (ARP2) for the plurality of wells PW is arranged on one side so as to interpose the AR1 in a Y-axis direction, and a common power feeding region (ARN2) for the plurality of wells NW is arranged on the other side. In the power feeding region (ARP2) for the PW wells, a p+-type power-feeding diffusion layer P+(DFW) having an elongate shape extending in the X-axis direction is formed. A plurality of gate layers GT extending in the X-axis direction to cross the boundary between the PW and NW wells are arranged in the AR1, and a plurality of MIS transistors are correspondingly formed.