摘要:
A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
摘要:
A semiconductor device with reduced leakage current and a method of making the same is disclosed. The semiconductor device includes a substrate having a device layer, a dielectric layer, and a gate metal opening within the dielectric layer between a source contact and a gate contact. A first metal layer is disposed within the gate metal opening, and a second metal layer is disposed directly onto the second metal layer, wherein the second metal layer is oxidized and has a thickness that ranges from about 4 Angstroms to about 20 Angstroms to limit a leakage current of a total gate periphery to between around 0.1 μA/mm and around 50 μA/mm. A current carrying layer is disposed on the second metal layer. In one embodiment, the first metal layer is nickel (Ni), the second metal layer is palladium (Pd), and the current carrying layer is gold (Au).
摘要:
A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
摘要:
A semiconductor device with reduced leakage current and a method of making the same is disclosed. The semiconductor device includes a substrate having a device layer, a dielectric layer, and a gate metal opening within the dielectric layer between a source contact and a gate contact. A first metal layer is disposed within the gate metal opening, and a second metal layer is disposed directly onto the second metal layer, wherein the second metal layer is oxidized and has a thickness that ranges from about 4 Angstroms to about 20 Angstroms to limit a leakage current of a total gate periphery to between around 0.1 μA/mm and around 50 μA/mm. A current carrying layer is disposed on the second metal layer. In one embodiment, the first metal layer is nickel (Ni), the second metal layer is palladium (Pd), and the current carrying layer is gold (Au).
摘要:
Methods for fabricating a field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends are disclosed. The methods provide field effect transistors that each include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. At least one method includes etching at least one gate channel into the passivation layer with a predetermined slope that reduces electric fields at a gate edge. Other methods include steps for fabricating a sloped gate foot, a round end, and/or a chamfered end to further improve high voltage operation.
摘要:
A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
摘要:
A field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends is disclosed. Embodiments of the field effect transistor include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. Another embodiment includes at least one source field plate integral with the at least one source finger. The at least one source field plate extends over the at least one gate finger that includes a portion outside of the active region. Either embodiment can also include a sloped gate foot to further improve high voltage operation.
摘要:
Methods for fabricating a field effect transistor having at least one structure configured to redistribute and/or reduce an electric field from gate finger ends are disclosed. The methods provide field effect transistors that each include a substrate, an active region disposed on the substrate, at least one source finger in contact with the active region, at least one drain finger in contact with the active region, and at least one gate finger in rectifying contact with the active region. One embodiment has at least one end of the at least one gate finger extending outside of the active region. At least one method includes etching at least one gate channel into the passivation layer with a predetermined slope that reduces electric fields at a gate edge. Other methods include steps for fabricating a sloped gate foot, a round end, and/or a chamfered end to further improve high voltage operation.