Abstract:
The present disclosure relates to a ring-frame power package. The ring-frame power package includes a thermal carrier and a ring structure. The thermal carrier has a carrier surface. The ring structure is disposed over the carrier surface of the thermal carrier so that a portion of the carrier surface is exposed through an interior opening of the ring body. The ring structure also includes one or more interconnect tabs that extend outward from an outer periphery of the ring body. Each interconnect tab includes a top plated area that covers at least a portion of a top surface and a bottom plated area that covers at least a bottom surface of the respective interconnect tab. Notably, each top plated area also covers a contact portion of the ring body that is adjacent to the respective interconnect tab. Each top plated area is electrically coupled to the corresponding bottom plated area.
Abstract:
An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss is disclosed. In particular, the disclosed integrated power module is structured to provide improved isolation and thermal conductivity. The structure includes a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad. A thermally conductive and electrically insulating slug substantially fills the cavity to provide a higher efficient thermal path between the enhancement mode device and the bottom drain pad for the depletion mode device.
Abstract:
The present disclosure relates to a ring-frame power package. The ring-frame power package includes a thermal carrier and a ring structure. The thermal carrier has a carrier surface. The ring structure is disposed over the carrier surface of the thermal carrier so that a portion of the carrier surface is exposed through an interior opening of the ring body. The ring structure also includes one or more interconnect tabs that extend outward from an outer periphery of the ring body. Each interconnect tab includes a top plated area that covers at least a portion of a top surface and a bottom plated area that covers at least a bottom surface of the respective interconnect tab. Notably, each top plated area also covers a contact portion of the ring body that is adjacent to the respective interconnect tab. Each top plated area is electrically coupled to the corresponding bottom plated area.
Abstract:
An integrated power module having a depletion mode device and an enhancement mode device that is configured to prevent an accidental on-state condition for the depletion mode device during a gate signal loss is disclosed. In particular, the disclosed integrated power module is structured to provide improved isolation and thermal conductivity. The structure includes a substrate having a bottom drain pad for the depletion mode device disposed on the substrate and an enhancement mode device footprint-sized cavity that extends through the substrate to the bottom drain pad. A thermally conductive and electrically insulating slug substantially fills the cavity to provide a higher efficient thermal path between the enhancement mode device and the bottom drain pad for the depletion mode device.