Abstract:
A MEMS (Micro-Electro-Mechanical System) device includes: a substrate, including an anchor; a proof mass, including a centroid, wherein there is a distance between the centroid and the anchor; at least two spring assemblies, connected between two opposite sides of the anchor and the proof mass, to assist a motion of the proof mass; and plural sensing capacitances, located between the substrate and the proof mass to operably sense the motion of the mass; wherein each of the spring assemblies includes a parallel-swing spring and a compression spring which are serially connected to each other.
Abstract:
A MEMS device includes: a fixed structure, a movable structure, and a compensation circuit. The fixed structure includes a fixed electrode and a fixed compensation electrode. The movable structure includes a movable electrode and a movable compensation electrode. The movable electrode and the fixed electrode form a sensing capacitor, and the movable compensation electrode and the fixed compensation electrode form a compensation capacitor. The compensation circuit compensates a sensing signal generated by the sensing capacitor with a compensation signal generated by the compensation capacitor. The sensing capacitor and the compensation capacitor do not form a differential capacitor pair. A proportion of the sensing area of the compensation capacitor to the sensing area of the sensing capacitor is lower than 1.
Abstract:
The invention provides a combo MEMS device. The combo MEMS device includes a substrate, a device layer, a cap, and at least two sensor units. The device layer is on the substrate. The cap is on the device layer. At least two sensor units which are adjacent to each other are both formed by the substrate, the device layer, and the cap. The first sensor unit includes a sealed space, and the second sensor unit includes a membrane and a semi-sealed space. The membrane is formed by reducing a thickness of a portion of the device layer. The semi-sealed space is formed between the substrate and the device layer or between the device layer and the cap, to receive an external pressure through an external pressure communication opening. The external pressure communication opening is formed between the substrate and the device layer, or between the device layer and the cap, or between the substrate and the cap.