Abstract:
This invention relates to an organic light-emitting display (OLED) device comprising a substrate, a first electrode layer mounted on one side of the substrate, a second electrode layer sandwiched between the substrate and the first electrode layer, at least one organic electroluminescent layer sandwiched between the first electrode layer and the second electrode layer, a color conversion layer of fluorescent powder sandwiched between the substrate and the second electrode layer, and at least one filter layer sandwiched between the color conversion layer of fluorescent powder and the substrate; wherein the color conversion layer of fluorescent powder converts in a shorter wavelength light emitted by excitation of the organic electroluminescent layer through an electric current into white combination light, and the white combination light is then converted into full color display information through the color filter. Also, the present invention relates to a process for fabricating the OLED device.
Abstract:
A thin-film-transistor organic electroluminescent device comprises: a substrate; a plurality of stripes of first conductive lines; a plurality of stripes of second conductive lines, intersecting the first conductive lines; a plurality of functional elements located at the intersections of the first conductive lines and the second conductive lines, including a transistor having a drain, a source and a gate; a cathode mounted on the surface of the substrate and connected to the drain; an anode mounted on the cathode; and at least one organic electroluminescent medium sandwiched between the cathode and the anode; wherein the cathode and the first conductive lines are made of the same material.
Abstract:
A developing apparatus for organic electroluminescent display panels comprises a developing unit for supplying a developing solution to be uniformly dispensed to the surface of an organic electroluminescent display panel by immersing the organic electroluminescent display panel into the developing solution or spreading the developing solution over the organic electroluminescent display panel, a cleaning unit having at least a bath connected to the end of the developing unit for spraying a recycled cleaning liquid or cleaning liquid over the organic electroluminescent display panel, a drying unit having at least an airflow driers, and a transporting unit for transporting the electroluminescent display panel; wherein the organic electroluminescent display panel is transported at a constant speed by the transporting unit of the developing apparatus.
Abstract:
An organic electroluminescent panel having a silver alloy is disclosed, which has a substrate; a plurality of the first electrodes; a plurality of the second electrodes; a plurality of conducting lines containing a silver alloy; a plurality of isolating walls; and a plurality of organic electroluminescent media. The first electrodes are arranged in parallel on the substrate. The organic electroluminescent media are disposed on the first electrodes. The second electrodes are disposed on the organic electroluminescent media. The conducting lines containing the silver alloy connect to the first electrodes or the second electrodes. The silver alloy contained in the conducting lines has 80 to 99.8 mol % of silver; 0.1 to 10 mol % of copper; and 0.1 to 10 mol % of at least one transition metal selected from the group consisting of palladium (Pd), magnesium (Mg), gold (Au), platinum (Pt), and the combinations thereof.
Abstract:
A surface treatment process for fabricating a panel of an organic light emitting device is disclosed. The surface treatment process for fabricating a panel of an organic light emitting device comprises following steps: forming on a substrate a plurality of first electrodes; forming a plurality of ramparts having T-shape cross-section on said substrate and selectively on said first electrodes through coating positive chemically amplified photoresist compositions having photo-acid generators on said substrate, exposing coated substrate to UV radiation to form latent pattern, post-exposure surface treating said photoresist on said substrate in a alkaline atmosphere and developing said photoresist; wherein each rampart protruding from said substrate and having an overhanging portion projecting in a direction parallel to said substrate; depositing organic electroluminescent media to the exposed area between said ramparts on said substrate; forming a plurality of second electrodes on said organic electroluminescent media on said substrate.
Abstract:
A method for fabricating a low temperature polysilicon organic electroluminescent substrate comprises the following steps: providing a substrate; forming an amorphous silicon layer on the substrate; forming a plurality of patterned transistor elements each having a patterned source, a patterned drain and a patterned gate in the amorphous silicon layer by photolithography and ion doping; annealing the patterned transistor element having the patterned source, drain and gate by excimer laser; forming a plurality of patterned stripe second conductive lines connected to the gates on the surface of the substrate; forming a patterned isolation layer on the gate layer, and also forming a plurality of patterned stripe first conductive lines and a patterned first electrode on the substrate; forming at least one organic electroluminescent medium on the first electrode; and forming a second electrode layer on the organic electroluminescent medium.
Abstract:
A vapor transferring apparatus for purification of organic functional materials is disclosed, which comprises a furnace having at least a furnace gate, furnace walls, and a heater; wherein said furnace gate is mounted on said furnace walls of said heater; at least a glove box having at least a box gate, box walls, and at least one glove; wherein said box gate is mounted on said box walls of said glove box; and a shifting chamber having at least a valve and at least a surrounding wall, locating between and connecting with said furnace gate of said furnace or said box gate of said glove box; wherein said valve is mounted on said surrounding wall of said shifting chamber; wherein the heater, the glove box, and the shifting chamber are hermetical and hollow.
Abstract:
A method of the invention for forming a pixel-defining layer on an OLED panel is disclosed. The method of the invention for forming a pixel-defining layer on an OLED panel, comprising following steps: (A) providing a substrate; (B) forming a plurality of first electrodes on said substrate; (C) coating a layer of anti-glare compositions comprising non-photosensitive polyimide and light-absorbing pigments or dyes on said substrate; (D) first prebaking said substrate with said layer of said anti-glare compositions; (E) coating a layer of photoresist compositions on said layer of anti-glare compositions; (F) second prebaking said substrate with said anti-glare compositions and said photoresist; (G) forming patterns of said photoresist through exposing said substrate to masked radiation, developing said photoresist on said substrate, etching said layer of said anti-glare compositions and said photoresist at the same time to form patterned layers of said anti-glare polyimide or polyimide precursor compositions and patterned photoresist; and (I) baking said substrate with said patterned anti-glare polyimide or polyimide precursor compositions for crosslinking or curing to form said anti-glare pixel-defining layers.
Abstract:
A panel for an organic electroluminescent device is disclosed, which has a substrate having a first conducting area, a second conducting area, a third conducting area, and an active area; wherein active area locates between first conducting area and second conducting area; third conducting area locates at one side of active area; first conducting area, second conducting area, third conducting area and active area are integrated together on the surface of substrate; and third conducting area locates adjacent to first conducting area, second conducting area, and active area; a plurality of first conducting lines located in first conducting area on the substrate, a plurality of second conducting lines located in second conducting area on the substrate, and a plurality of third conducting lines located in third conducting area on the substrates.
Abstract:
A method of the invention for forming a pixel-defining layer on an OLED panel is disclosed. The method of the invention for forming a pixel-defining layer on an OLED panel, comprising following steps: (A) providing a substrate; (B) forming a plurality of first electrodes in parallel stripes on said substrate; (C) coating a layer of non-photosensitive polyimide or polyimide precursor compositions on said substrate; (D) first prebaking said substrate; (E) coating a layer of photoresist compositions on said layer of non-photosensitive polyimide or polyimide precursor compositions; (F) second prebaking said substrate; (G) forming patterns of said photoresist by exposing said substrate to masked radiaion and developing said photoresist; (H) etching said layer of said non-photosensitive polyimide or polyimide precursor compositions to form patterned polyimide or polyimide precursor compositions; (I) releasing or stripping said patterned layer of said photoresist compositions; and (J) baking said substrate with patterned non-photosensitive polyimide or polyimide precursor compositions to form said pixel-defining layer.