Abstract:
A thermal barrier coated metallic article includes a platinum-group metal enriched outer layer on the article. The surface of the outer layer has a microstructure including a plurality of projections extending away from the metallic article. A thin adherent layer of oxide is formed on the outer layer of the metallic article. A ceramic coating is provided on the oxide layer on the surface on and around the projections. The ceramic coating includes a plurality of columnar ceramic grains which extend through the full thickness of the ceramic coating. The grains are arranged in clusters separated by gaps. The grains deposited around the projections are generally blocked. The projections reduce the stress in the ceramic coating near the interface with the adherent layer of oxide and also reduce the stress in the adherent layer of oxide and hence increase the working life of the thermal barrier coating system.
Abstract:
The present disclosure relates to a thermal barrier coating for coating a substrate. The thermal barrier coating may comprise an inner ceramic layer (e.g. 7YSZ) having a columnar grain structure and a first outer ceramic layer (e.g. 7YSZ) having a branched grain structure. The thermal barrier coating further comprises a nucleation layer (which may comprise alumina or tantala), interposed between the inner ceramic layer and the first outer layer. The layers can be deposited by PVD using substantially contact deposition parameters because the nucleation layer induces branching in the first outer ceramic layer.