摘要:
By providing large area metal plates in combination with respective peripheral areas of increased adhesion characteristics, delamination events may be effectively monitored substantially without negatively affecting the overall performance of the semiconductor device during processing and operation. In some illustrative embodiments, dummy vias may be provided at the periphery of a large area metal plate, thereby allowing delamination in the central area while substantially avoiding a complete delamination of the metal plate. Consequently, valuable information with respect to mechanical characteristics of the metallization layer as well as process flow parameters may be efficiently monitored.
摘要:
By providing large area metal plates in combination with respective peripheral areas of increased adhesion characteristics, delamination events may be effectively monitored substantially without negatively affecting the overall performance of the semiconductor device during processing and operation. In some illustrative embodiments, dummy vias may be provided at the periphery of a large area metal plate, thereby allowing delamination in the central area while substantially avoiding a complete delamination of the metal plate. Consequently, valuable information with respect to mechanical characteristics of the metallization layer as well as process flow parameters may be efficiently monitored.
摘要:
In sophisticated semiconductor devices, a contact structure may be formed on the basis of a void positioned between closely spaced transistor elements wherein disadvantageous metal migration along the void may be suppressed by sealing the voids after etching a contact opening and prior to filling in the contact metal. Consequently, significant yield losses may be avoided in well-established dual stress liner approaches while, at the same time, superior device performance may be achieved.
摘要:
By appropriately designing the geometric configuration of a contact level of a sophisticated semiconductor device, the tensile stress level of contact elements in N-channel transistors may be increased, while the tensile strain component of contact elements caused in the P-channel transistor may be reduced.
摘要:
By providing an etch stop layer selectively at the bevel, at least one additional wet chemical bevel etch process may be performed prior to or during the formation of a metallization layer without affecting the substrate material. Hence, the dielectric material, especially the low-k dielectric material, may be reliably removed from the bevel prior to the formation of any barrier and metal layers. The etch stop layer may be formed at an early manufacturing stage so that a bevel etch process may be performed at any desired stage of the formation of circuit elements.
摘要:
In sophisticated semiconductor devices, a contact structure may be formed on the basis of a void positioned between closely spaced transistor elements wherein disadvantageous metal migration along the void may be suppressed by sealing the voids after etching a contact opening and prior to filling in the contact metal. Consequently, significant yield losses may be avoided in well-established dual stress liner approaches while, at the same time, superior device performance may be achieved.
摘要:
By providing an etch stop layer selectively at the bevel, at least one additional wet chemical bevel etch process may be performed prior to or during the formation of a metallization layer without affecting the substrate material. Hence, the dielectric material, especially the low-k dielectric material, may be reliably removed from the bevel prior to the formation of any barrier and metal layers. The etch stop layer may be formed at an early manufacturing stage so that a bevel etch process may be performed at any desired stage of the formation of circuit elements.
摘要:
Apparatus for semiconductor device structures and related fabrication methods are provided. One method for fabricating a semiconductor device structure involves forming a layer of dielectric material overlying a doped region formed in a semiconductor substrate adjacent to a gate structure and forming a conductive contact in the layer of dielectric material. The conductive contact overlies and electrically connects to the doped region. The method continues by forming a second layer of dielectric material overlying the conductive contact, forming a voided region in the second layer overlying the conductive contact, forming a third layer of dielectric material overlying the voided region, and forming another voided region in the third layer overlying at least a portion of the voided region in the second layer. The method continues by forming a conductive material that fills both voided regions to contact the conductive contact.
摘要:
By appropriately designing the geometric configuration of a contact level of a sophisticated semiconductor device, the tensile stress level of contact elements in N-channel transistors may be increased, while the tensile strain component of contact elements caused in the P-channel transistor may be reduced.
摘要:
Metallization systems on the basis of copper and low-k dielectric materials may be efficiently formed by providing an additional dielectric material of enhanced surface conditions after the patterning of the low-k dielectric material. Consequently, defects such as isolated copper voids and the like may be reduced without significantly affecting overall performance of the metallization system.