摘要:
The present invention provides for a catalyst composition which is effective for use in the production of dimer products and higher olefin products from lower olefins such as propylene and butene in high yields and with an average degree of branching in the dimer products of less than about 1.6 methyl groups per molecule, generally in the range of from about 1.0 to 1.4 methyl groups per molecule. The present invention also provides a process for producing such dimer and higher olefin products using the catalyst composition of this invention. The catalyst of the invention comprises an amorphous nickel oxide (NiO) present as a disperse substantial monolayer on the surfaces of a silica (SiO.sub.2) support, which support also contains minor amounts of an oxide of aluminum, gallium or indium such that the ratio of NiO to metal oxide present in the catalyst is within the range of from about 4:1 to about 100:1. The catalyst may be prepared by precipitating a water insoluble nickel salt onto the surfaces of a silica support which has been impregnated with the metal oxide or onto a silica-alumina support which has been dealuminized such that the resulting nickel oxide/alumina ratio will fall within the ranges set forth above. The catalyst may then be activated by calcination in the presence of oxygen at a temperature within the range of from about 500.degree. to 700.degree. C.
摘要:
The present invention provides for a catalyst composition which is effective for use in the production of dimer products and higher olefin products from lower olefins such as propylene and butene in high yields and with an average degree of branching in the dimer products of less than about 1.6 methyl groups per molecule, generally in the range of from about 1.0 to 1.4 methyl groups per molecule. The present invention also provides a process for producing such dimer and higher olefin products using the catalyst composition of this invention. The catalyst of the invention comprises an amorphous nickel oxide (NiO) present as a disperse substantial monolayer on the surfaces of a silica (SiO.sub.2) support, which support also contains minor amounts of an oxide of aluminum, gallium or indium such that the ratio of NiO to metal oxide present in the catalyst is within the range of from about 4:1 to about 100:1. The catalyst may be prepared by precipitating a water insoluble nickel salt onto the surfaces of a silica support which has been impregnated with the metal oxide or onto a silica-alumina support which has been dealuminized such that the resulting nickel oxide/alumina ratio will fall within the ranges set forth above. The catalyst may then be activated by calcination in the presence of oxygen at a temperature within the range of from about 500.degree. to 700.degree. C.
摘要:
The present invention provides for a non-nickel-containing catalyst which is effective for use in the production of dimer products and higher olefin products from a butene starting material at relatively high conversion, good selectivity towards octene production and good activity maintenance over prolonged polymerization times. The catalyst is prepared by impregnating an amorphous trivalent metal oxide support selected from the group consisting of aluminum oxide, gallium oxide and indium oxide with a silicon-containing precursor compound which, after calcination, yields a substantial mono layer of SiO.sub.2 on the surface of the metal oxide support. A disperse layer of TiO.sub.2 is then deposited on the surface of the SiO.sub.2 monolayer by application of a solvent solution of a precursor compound containing titanium onto the SiO.sub.2 monolayer, followed by calcination to reduce the precursor titanium compound to TiO.sub.2.
摘要:
A method for preparing a high-purity ionic liquid having a pH value of 7 and an elemental analysis deviation of less than 0.5 wt % between a calculated elemental analysis and a found elemental analysis for each of carbon, hydrogen and nitrogen, wherein the method comprises forming a monophasic or biphasic mixture of an ionic liquid and an inert liquid. When the monophasic mixture is formed, it is filtered to yield a filtrate from which the high-purity ionic liquid is recovered. When the biphasic mixtures is formed, it is separated into an aqueous phase and ionic liquid phase, whereby the ionic liquid phase is filtered to yield a filtrate from which the high-purity ionic liquid is recovered. Furthermore, the present purification procedure can be used for the clean-up of a contaminated ionic liquid by extracting it into a polar extractant to form an extract containing the ionic liquid. Water traces are removed from the extract. Then, the extract is filtered and the high-purity ionic liquid is recovered from the filtered extract.