摘要:
The invention relates to post pyrolysis thermal treatment for pyrolytic manganese dioxide coatings for use in conjunction with porous anodized valve metal nitride electrolytic capacitor anodes for the purpose of transforming the manganese dioxide to a higher conductivity form of manganese dioxide.
摘要:
An electrolytic capacitor comprising a thermally treated anode prepared by heating a manganese dioxide coated porous anodized valve metal nitride anode to a temperature of about 325° C. to about 450° C. The anode may be heated to first temperature of about 200° C. to about 250° C. for a time sufficient for the valve metal nitride anode to reach thermal equilibrium, prior to increasing the temperature to about 325° C. to about 450° C.
摘要:
A pyrolysis oven provides uniform pyrolytic coatings on capacitor anodes. An oven chamber contains cross-flow blowers situated to provide uniform laminar flow of oven atmosphere over the objects to be treated. The top and side walls of the chamber meet in an inverted V such that when the blower operate, a vortex is created in the inverted V in the chamber.
摘要:
A solid electrical capacitor having lowered ESR and fewer short circuit from processing is obtained by adhering a number of islands of a material more basic than the dielectric coating on an anode before forming a conductive polymer on the dielectric coating by a chemical oxidation process.
摘要:
An intrinsically conductive polymer is prepared with a chemical oxidative process. The polymer is prepared by first dipping or coating a substrate with an Fe(III)-containing oxidizer solution and drying. The substrate is then dipped or coated with a monomer, such as 3,4-ethylenedioxythiophene solution, and reacted to form the conductive polymer. The monomer is dissolved in a solvent in which it has a high solubility but in which the Fe(III)-containing oxidizer has low solubility. This minimizes cross-contamination of the monomer and oxidizer dipping solutions thereby making this process suitable for high volume production. Dissolving the monomer in a solvent allows control over the stoichiometric ratio of monomer to oxidizer and prevents an excess of monomer thereby facilitating the removal of any unreacted monomer by water. The substrate is then dipped in an aqueous solution of para-toluenesulfonic acid to facilitate the removal of Fe(II) byproducts by enhancing their solubility in water and then the substrate may be washed with an aqueous solution or pure water. The process produces low ESR and low leakage valve metal capacitors with conductive polymer cathodes.
摘要:
The present invention provides a manganese nitrate coating having high conductivity and solid tantalum anode capacitors having low ESR by using an oven atmosphere which effectively treats all of the anodes in the oven. The manganese nitrate coating of the present invention is produced under highly oxidizing conditions by providing one or more oxidizing agents more active than nitrogen dioxide in the atmosphere of the oven during pyrolysis of manganese nitrate. The oxidizing agents include nitric acid, hydrogen peroxide, ozone, and mixtures thereof.
摘要:
A method of anodizing comprising suspending at least one aluminum substrate into an electrolyte solution and applying an anodizing current to the electrolyte solution, wherein the electrolyte solution comprises from about 5 to about 99.5 wt % glycerine, about 0.05 to about 5.0 wt. % of at least one orthophosphate salt selected from the group consisting of ammonium phosphates, alkali metal phosphates, amine phosphates, or mixtures thereof, and water.
摘要:
A method of anodizing a metal comprising immersing a metal substrate into an a glycerine-based electrolytic solution and applying a constant current to produce a uniform film. The electrolytic solution additionally comprises at least one acidic organic salt, inorganic salt, or mixtures thereof. Suitable salts include dibasic potassium phosphate, P-toluene sulfonate, potassium hydrogen sulfate and monobasic potassium tartrate. The electrolytic solution may be prepared by mixing glycerine and the salt or salts, and then heating the solution to about 150 to 180° C. for about 1 to 12 hours. The prepared solution preferably has a water content of less than 0.1 wt %. Anodizing may be performed in the electrolytic solution at temperatures above about 150° C. to achieve non-thickness-limited film growth. Temperature fluctuations within the solution are reduced by the use of impellers or ultrasonic agitation.
摘要:
A process for treating an impregnated electrolytic capacitor anode whereby the anode body is immersed in a liquid electrolytic solution and a voltage is applied to the anode body, whereby a current flows through and repairs flaw sites in the anode body. The liquid electrolytic solution includes an organic solvent comprising at least one of polyethylene glycol, polyethylene glycol monomethyl ether, and polyethylene glycol dimethyl ether. Alternatively, the electrolytic solution includes an organic solvent and an alkali metal phosphate salt. Preferably, the electrolytic solution contains both an alkali metal phosphate salt and an organic solvent comprising at least one of polyethylene glycol, polyethylene glycol monomethyl ether, and polyethylene glycol dimethyl ether.
摘要:
An improved capacitor is provided wherein the improved capacitor has improved ESR. The capacitor has a fluted anode and an anode wire extending from the fluted anode. A dielectric is on the fluted anode. A conformal cathode is on the dielectric and a plated metal layer is on the carbon layer.