Abstract:
An image capture system comprises an image input and processing unit. The image input obtains image information which is then passed to the processing unit. The processing unit is coupled to the image input for determining image metrics on the image information. The processing unit initiates a capture sequence when the image metrics meet a predetermined condition. The capture sequence may store one or more images, or it may indicate that one or more images have been detected. In one embodiment, the image input is a CMOS or CCD sensor.
Abstract:
An image capture system comprises an image input and processing unit. The image input obtains image information which is then passed to the processing unit. The processing unit is coupled to the image input for determining image metrics on the image information. The processing unit initiates a capture sequence when the image metrics meet a predetermined condition. The capture sequence may store one or more images, or it may indicate that one or more images have been detected. In one embodiment, the image input is a CMOS or CCD sensor.
Abstract:
An imaging apparatus that is configurable to operate in at least two modes. One mode is particularly suitable for still image capture, whereas the second mode is suitable for video image capture and other rapid frame rate applications. The image data in the second mode is smaller (lower resolution) than the image data obtained in the first mode. The reduction is accomplished by either digital scaling, cropping, or by a combination of optical scaling and selective readout of sensor signals. The simple digital scaling provides a fixed angular field of view for both modes of operation, while cropping alone gives a smaller field of view. Using the combination of optical scaling and selective sensor signal readout, however, provides a wider field of view for the second mode of operation while at the same time providing lower resolution images, thus improving frame rate in the second mode of operation. The embodiments can be used in a wide range of imaging applications, including digital cameras used for both still image capture and video.
Abstract:
An image capture system comprises an image input and processing unit. The image input obtains image information which is then passed to the processing unit. The processing unit is coupled to the image input for determining image metrics on the image information. The processing unit initiates a capture sequence when the image metrics meet a predetermined condition. The capture sequence may store one or more images, or it may indicate that one or more images have been detected. In one embodiment, the image input is a CMOS or CCD sensor.
Abstract:
An image capture system comprises an image input and processing unit. The image input obtains image information which is then passed to the processing unit. The processing unit is coupled to the image input for determining image metrics on the image information. The processing unit initiates a capture sequence when the image metrics meet a predetermined condition. The capture sequence may store one or more images, or it may indicate that one or more images have been detected. In one embodiment, the image input is a CMOS or CCD sensor.
Abstract:
An electronic system including signal processing circuitry that can operate in video and still image modes. Incoming image data is processed and compressed according to the operating mode. Processing includes scaling logic configured to use scaling methodologies appropriate to each mode. Compressing includes using compression methodologies appropriate to each mode.
Abstract:
An image capture system comprises an image input and processing unit. The image input obtains image information which is then passed to the processing unit. The processing unit is coupled to the image input for determining image metrics on the image information. The processing unit initiates a capture sequence when the image metrics meet a predetermined condition. The capture sequence may store one or more images, or it may indicate that one or more images have been detected. In one embodiment, the image input is a CMOS or CCD sensor.
Abstract:
A cost effective digital image capture apparatus such as a digital camera that operates in both still mode and video mode, using a common programmable image processing chain and fixed optics. The full resolution of the image sensor (yielding raw image data) may be used in still mode, with adequate signal-to-noise ratio (SNR) achieved either from the scene ambient lighting or from supplemental light supplied by a strobe. In video mode, the apparatus may be configured to capture video image data by programming the parameters for image processing methodologies such as scaling, decorrelation, and encoding into a look-up table (LUT) which in turn configures logic circuitry to spatially scale and compress if necessary the raw image data in order to meet storage and transmission bandwidth constraints for video images. In video mode, adequate SNR may be achieved despite the lower light conditions, encountered, for example, during videoconferencing, by averaging pixels together during scaling.
Abstract:
A method and system for automatically capturing user edits in a digital recording are described. The method involves determining a beginning time stamp for an edit segment in a digital recording and an ending time stamp for the edit segment in the digital recording. The method then receives an indication from a user whether to modify the edit segment for subsequent viewing of the digital recording.
Abstract:
A dynamic region, such as subtitles, is detected in a stream of digital video, and displayed along with a static region also in the stream, such as a video region, so that nearly all of the total vertical display area of a monitor displaying the dynamic and static regions is filled. For example, when the dynamic region is detected, the vertical size of the static region is adjusted to allow the vertical display of the dynamic and static region on the monitor simultaneously, without extending beyond or reducing to less than the total vertical display size of the monitor. Also, when the dynamic region is not detected, the vertical height of the static region is adjusted to fill the total vertical display size. Moreover, iterative increase and decrease in the vertical sizes of the regions may allow for a more pleasant viewer experience.