摘要:
The present invention relates to the use of anionic alkyl cellulose mixed ethers, preferably alkyl carboxy-methyl cellulose mixed ethers and, more preferably methyl carboxymethyl cellulose mixed ethers (MCMC), as auxiliaries in the textile industry and preferably as thickeners for textile printing pastes.
摘要:
The present invention relates to sulphoalkylcellulose derivatives, in particular sulphoethylcellulose, with a degree of substitution by sulphoethyl groups of 1.2 to 2.0 using a one- to three-step, preferably two-step process and the use of the sulphoalkyl-cellulose derivatives as thickening agents or rheology improvers in textile printing.
摘要:
The invention relates to certain highly substituted carboxymethyl sulfoethyl cellulose ethers (CMSEC), to a simplified and economic process for their production and to their use as thickeners in textile printing.
摘要:
The invention relates to water-soluble sulfoethyl cellulose ethers, more particularly methyl sulfoethyl cellulose ether (MSEC), of very high solution quality, to a process for its production and to the use of these products as thickeners, dispersants or binders.
摘要:
The present invention relates to water-soluble, particularly ternary, preferably ionic, cellulose mixed ethers, more particularly to anionic water-soluble cellulose mixed ethers, as additives for drilling fluid applications.
摘要:
The invention relates to a new class of water-soluble ionic cellulose derivatives and their use as additive for gypsum- and cement-containing compounds.
摘要:
Cellulose ethers, wherein at least a part of the hydroxyl groups of the cellulose backbone are substituted by methoxy groups and hydroxyalkoxy groups, and optionally alkoxy groups being different from methoxy groups, having an unconventional distribution of methoxy substituents at the 2-, 3- and 6-positions of the anhydroglucose units are described. Such cellulose ethers exhibit significantly higher thermoreversible gel strengths than any known hydroxyalkyl methyl celluloses of comparable viscosity and kind and level of substitution rendering them useful as additives for building compositions such as cement based tile adhesives. In particular, such cellulose ethers can be used to improve the attainable adhesion strength after heat storage conditioning and the temporal setting characteristics of a building composition.