摘要:
A work piece handling apparatus moves workpieces with a plurality of independently movable load cups that have combined multiple axes of motion. The apparatus can load and unload work pieces from a wet process station and move work pieces between wet process stations and maintain wet chemistry delivery to the workpiece without involving a robot. A method of work piece handling using the apparatus provides a significant throughput improvement by reducing the inherent time lag of pneumatic systems and eliminating multiple steps involving the robot during inter-station wafer transfer.
摘要:
Rotational hardstop assemblies that provide greater than 360 degrees of non-continuous rotation for rotating mechanisms are provided. In certain embodiments, an assembly is used to provide 630 or more degrees of rotation for the shoulder axis of a robot, such as a wafer transfer robot. The rotational hardstop assemblies include opposing magnets as springs. According to various embodiments, the opposing magnets provide non-contact engagement and produce no contact noise nor have any wear over time. The rotational hardstop assemblies provide the ability to location from either direction of rotation of a robot cylindrical coordinate system.
摘要:
Rotational hardstop assemblies that provide greater than 360 degrees of non-continuous rotation for rotating mechanisms are provided. In certain embodiments, an assembly is used to provide 630 or more degrees of rotation for the shoulder axis of a robot, such as a wafer transfer robot. The rotational hardstop assemblies include opposing magnets as springs. According to various embodiments, the opposing magnets provide non-contact engagement and produce no contact noise nor have any wear over time. The rotational hardstop assemblies provide the ability to location from either direction of rotation of a robot cylindrical coordinate system.
摘要:
Methods, systems and apparatuses for high throughput substrate transfer are provided. According to various embodiments, the methods and systems described use robots having dedicated end effectors for hot and cold wafers or other substrates). Throughput is increased by optimizing the transfer of both the hot and the cold wafers. Also described are wafer transfer apparatuses having end effectors configured for supporting either hot or cold wafers. In certain embodiments, dual arm robots having dedicated hot and cold wafer arms are provided. Also provided are methods of transferring substrates that to improve overall throughput. The methods involve transferring hot and cold substrates at different accelerations.
摘要:
Methods and systems for positioning wafers using a dual side-by-side end effector robot are provided. The methods involve performing place moves using dual side-by-side end effector robots with active wafer position correction. According to various embodiments, the methods may be used for placement into a process module, loadlock or other destination by a dual wafer transfer robot. The methods provide nearly double the throughput of a single wafer transfer schemes by transferring two wafers with the same number of moves.
摘要:
Methods and systems for positioning wafers using a dual side-by-side end effector robot are provided. The methods involve performing place moves using dual side-by-side end effector robots with active wafer position correction. According to various embodiments, the methods may be used for placement into a process module, loadlock or other destination by a dual wafer transfer robot. The methods provide nearly double the throughput of a single wafer transfer schemes by transferring two wafers with the same number of moves.