Abstract:
An assembly for rectifying vertebrae, comprises: two bone anchoring means intended to be implanted on a same vertebra, a triangulation bar and a connection means for connecting the triangulation bar to each bone anchoring means and for holding the bone anchoring means in a given position in order to form, with the triangulation bar connected to the bone anchoring means by means of the connection means, a rigid triangular assembly, the triangulation bar comprising an attachment area for attaching a correction instrument arranged to ensure a rigid attachment in rotation and in translation of the correction instrument on the triangulation bar.
Abstract:
A spinal cage implant is adapted to be inserted in a damaged intervertebral disc for restoring the discal height and permitting an arthoesis. The implant comprises a central part with walls and terminal parts for bearing against the cortical bone of the vertebral end plates. The implant bears against the vertebral end plates with terminal parts and contains bone graft material between walls with an opening to permit bone fusion between the two vertebrae. The implant permits restoring the physiological lordosis and the intervertebral height.
Abstract:
Anchoring plate for a device for osteosynthesis of the vertebral column, including means for connecting it to one or more rods or to a plate. Its lower face is configured to match the shape of a contact zone situated to straddle two vertebrae, and it has openings for the passage of screws. The device for osteosynthesis of the vertebral column includes one or more rods or plates connected to vertebrae by way of connectors and anchoring plates. At least one of the anchoring plates is of the above type described above.
Abstract:
A spinal cage implant (1) is adapted to be inserted in a damaged intervertebral disc for restoring the discal height and permitting an arthoesis. Implant (1) comprises a central part (3c) with walls (4) and terminal parts (5, 6) for bearing against the cortical bone (14) of the vertebral end plates (15, 16). Central part (3c) is adapted to penetrate the vertebral end plates (15, 16) and transversely projects from the terminal bearing parts (5, 6). Implant (1) bears against the vertebral end plates (15, 16) with terminal parts (5, 6) and contains bone graft material between walls (4) which penetrate the openings (19, 21) in the end plates (15, 16) and permit bone fusion between the two vertebrae (V1, V2). Implant (1) permits restoring the physiological lordosis and the intervertebral height
Abstract:
The stabilizing device can be adapted to an anchor such as a hook (1) of the usual shape, with a hook body (4) and an incurved lug (7). The device including a stabilizing staple fastener (3) having a body (21) and staple legs (22-25). Said fastener body (21) is adapted so that the securing member secure the hook (1) to an attachment rod (52) also attach the fastener (3) to the hook (1), by forcing back the legs (22-25) in the direction of the incurved lug (7) so as to pierce a portion of the vertebra located in the hollow of the hook (1). The hook (1) is thereby effectively stabilized on the vertebra.
Abstract:
A sacral support saddle has an eye (36) for receiving a first screw (38) and a cylindrical hole (37) with an axis (X5) of inclination such that, when the saddle (29) is positioned on the sacrum, the screw (38) is inserted into the sacral plate and towards the upper axis of the latter. A U-shaped body (32) delimits a channel (34) for receiving a rod, and a stopper (7) locks the rod (8) in this body. A hole (33) for passage of a second screw (42) has an axis (Y5) divergent relative to the axis (X5) of the hole of the eye in such a way as to be oriented towards the iliac mass when the saddle is positioned on the sacrum. This saddle and its two screws (38, 42) provide for a reliable anchoring of the rod of the device to the sacrum by virtue of the penetration of the screws into solid regions of the latter. This, in practice, avoids any risk of pulling out and, consequently, a second surgical intervention.
Abstract:
This invention relates to a spinal implant for promoting fusion of adjacent vertebrae and restoration of normal disc height. The spinal implant includes an upper and lower surface adapted to engage cancellous bone tissue in the vertebral bodies. The spinal implant also includes at least two opposing bearing surfaces adapted to bear against cortical bone tissue in the endplates of adjacent vertebrae. This invention also provides an instrumentation to prepare the intervertebral space to receive the spinal implant and techniques for treating patents in need of corrective spinal surgery.
Abstract:
This invention relates to a spinal implant for promoting fusion of adjacent vertebrae and restoration of normal disc height. The spinal implant includes an upper and lower surface adapted to engage cancellous bone tissue in the vertebral bodies. The spinal implant also includes at least two opposing bearing surfaces adapted to bear against cortical bone tissue in the endplates of adjacent vertebrae. This invention also provides an instrumentation to prepare the intervertebral space to receive the spinal implant and techniques for treating patents in need of corrective spinal surgery.
Abstract:
This instrumentation comprises at least one vertebral rod (1), bone anchoring elements (2) spaced along the rod, a connector (3) connecting the rod to each anchoring element, and pressure means (4) for clamping together the rod, the anchoring element and the connector; each anchoring element has a bearing surface (7) for the rod which is inclined relative to the longitudinal axis (XX) of the anchoring element; in the connector there is provided a cavity (11) providing at least one bearing point for the rod held trapped between said inclined bearing surface and a wall (12) of the cavity, and the latter is extended by a lateral aperture (18) permitting insertion of the vertebral rod radially in its cavity; this instrumentation is easy to use by the surgeon owing to the convenience of insertion of the rod in the connector, and the direct bearing of the rod against the surface (7) of the anchoring element (2) reduces its transverse overall size.
Abstract:
An apparatus including vertebral anchoring elements, such as a bone screw (1) or a hook (2), with a threaded cylindrical portion (5) and a locking plate (7). A nut (8) may be screwed onto the threaded cylindrical portion (5) to tighten the tightening portion of a slide (4) on a rigid connecting rod (3) with a circular cross-section. The rod (3), the slide (4) and the anchoring element (1,2) may be sufficiently rigidly connected by means of non-slip projections on the engaged side of the locking plate (7), on the corresponding side of the slide (4), and on the surface thereof which surrounds the rod (3). The stiffness of the apparatus may thus be enhanced, so that improved support of the vertebrae and easier fitting and adjustment of the apparatus may be achieved.