摘要:
A fuel cell separator plate assembly (20) includes a separator plate layer (22) and flow field layers (24, 26). In one disclosed example, the separator plate layer (22) comprises graphite and a hydrophobic resin. The hydrophobic resin of the separator plate layer (22) serves to secure the separator plate layer to flow field layers on opposite sides of the separator plate layer. In one example, at least one of the flow field layers (24, 26) comprises graphite and a hydrophobic resin such that the flow field layer is hydrophobic and nonporous. In another example, two graphite and hydrophobic resin flow field layers are used on opposite sides of a separator plate layer. One disclosed example includes all three layers comprising graphite and a hydrophobic resin.
摘要:
A fuel cell separator plate assembly (20) includes a separator plate layer (22) and flow field layers (24, 26). In one disclosed example, the separator plate layer (22) comprises graphite and a hydrophobic resin. The hydrophobic resin of the separator plate layer (22) serves to secure the separator plate layer to flow field layers on opposite sides of the separator plate layer. In one example, at least one of the flow field layers (24, 26) comprises graphite and a hydrophobic resin such that the flow field layer is hydrophobic and nonporous. In another example, two graphite and hydrophobic resin flow field layers are used on opposite sides of a separator plate layer. One disclosed example includes all three layers comprising graphite and a hydrophobic resin.
摘要:
A fuel cell separator plate assembly (20, 20a) includes a separator layer (22, 22a) and one or more reactant flow field layers (24, 24a, 26, 26a) comprising graphite flakes and a thermoplastic, hydrophobic resin which secures flow field layers on opposite sides of the separator layer. In another example, a separator plate assembly (20a) comprises a monolithic structure in which the separator portion (22a) and the flow field portions (24a, 26a) are all formed in a single piece of the same material. A method heats thermoplastic resin to its point of complete melting, then cools to its point where melting begins, increasing both electric and thermal conductivity. Methods include bonding under higher pressure than previously used, about 800 psi, or under pressures about 750 psi.
摘要:
A seal structure 58 between adjacent porous plates 18,20 and a method of making the seal structure for an electrochemical coil are disclosed. Various construction details are developed which facilitate fabrication and assembly. In one embodiment, the adjacent porous plates are electrolyte reservoir plates joined together at a three-layer seal structure to form an integral assembly.
摘要:
A seal structure 58 between adjacent porous plates 18, 20 and a method of making the seal structure for an electrochemical cell are disclosed. Various construction details are developed which facilitate fabrication and assembly. In one embodiment, the adjacent porous plates are electrolyte reservoir plates joined together at a three-layer seal structure to form an integral assembly.
摘要:
The coolant plate component of a fuel cell assembly is formed from a plate made from graphite particles that are bonded together by a fluorocarbon polymer binder and which encapsulate a serpentine coolant circulation tube. The coolant plate component is non-porous. The graphite particles are preferably flakes which pack together very tightly, and require only a minor amount of the polymer binder to form a solid plate. The plate will provide enhanced heat transfer, will conduct electrons, and will block electrolyte migration from cell to cell in a fuel cell stack due to its construction. The composition of the plate is graded so as to provide a varied coefficient of thermal expansion as measured through the thickness of the plate so as to reduce thermal stresses imposed on the fuel cell stack. The coolant circulation tube has a roughened outer surface which enhances adhesion of the encapsulating graphite flake/binder mixture without inhibiting heat transfer.
摘要:
The reactant flow field on the cathode side of a fuel cell assembly is formed from a plate made from carbon particles that are bonded together by a fluorocarbon polymer binder. The cathode reactant flow field is non-porous, and is hydrophobic due to the presence of the poller binder. The carbon particles are preferably carbon flakes which pack together very tightly, and require only a minor amount of the polymer binder to form a solid plate. The plate will provide cathode reactant flow channels, will conduct electrons and heat and will minimize acid absorption in a fuel cell stack due to its hydrophobic nature.
摘要:
A fuel cell (8a) having a matrix (11) for containing phosphoric acid (or other liquid) electrolyte with an anode catalyst (12) on one side and a cathode catalyst (13) on the other side includes an anode substrate (16a) in contact with the anode catalyst and a cathode substrate (17a) in contact with the cathode catalyst, the anode substrate being thicker than the cathode substrate by a ratio of between 1.75 to 1.0 and 3.0 to 1.0. Non-porous, hydrophobic separator plate assemblies (19) provide fuel flow channels (20) and oxidant flow channels (21) as well as demarcating the fuel cells.
摘要:
A method of heat treating a substrate for a fuel cell includes stacking substrates to form a group. A dimension is determined for a plate corresponding to a resulting mass that is less than a predetermined mass. The plate is arranged above the group to apply a weight of the plate to the group. The resulting masses for spacer plates and intermediate lifting plates, for example, are minimized to reduce the pressure differential between the bottom and top substrates in the heat treat assembly. In another disclosed method, a dimension for a plate, such as a top plate, is determined that corresponds to a resulting mass that is greater than a predetermined mass. The plate is arranged above the group to apply a weight of the plate to the group. The top plate resulting mass is selected to minimize a variation in the average pressure of the substrates throughout the heat treat assembly.
摘要:
A fuel cell assembly (20) has a plurality of characteristics that extend the useful life of the assembly. In one example, flow field layers are non-porous and hydrophobic such that they have an acid absorption rate of less than about 0.10 mg/khr-cm2. An electrolyte retaining matrix has a reaction rate with phosphoric acid of less than about 0.010 mg/khr-cm2. Hydrophilic substrates associated with catalyst layers have an initial transferable phosphoric acid content of less than about 25 mg/cm2. A condensation zone provides an evaporative phosphoric acid loss rate that is less than about 0.17 mg/khr-cm2.