摘要:
A duct work assembly is coupled to an end of an electronics enclosure that houses one or more heat generating devices, such as electronics servers. The duct work assembly includes individual duct guides that each have a deformable end, which is configured to locally deform around the electrical connection lines extending from the rear of one or more electronics servers. The deformable end can be made of bristles, as in a brush, or foam that includes slits and/or holes.
摘要:
A cooling system includes a re-configurable duct work assembly for a server rack or other electronics enclosure. Heat generating devices are positioned within the electronics enclosure and heat exchangers are coupled to the heat generating devices via the duct work. The duct work is positioned within a plenum between the back of the electronics servers and the heat exchangers. The interior of the electronics enclosure is conceptually segmented into heat zones. The duct work is used to selectively direct heated air to the heat exchangers. In some embodiments, the heated air output from a single heat zone is directed by the duct work to a corresponding single heat exchanger. In other embodiments, the heated air output from a group of adjacent heat zones is combined within a single duct work guide that directs the combined heated air to a corresponding number of adjacent heat exchangers.
摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
A duct work assembly is coupled to an end of an electronics enclosure that houses one or more heat generating devices, such as electronics servers. The duct work assembly includes individual duct guides that each have a deformable end, which is configured to locally deform around the electrical connection lines extending from the rear of one or more electronics servers. The deformable end can be made of bristles, as in a brush, or foam that includes slits and/or holes.
摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
A thermal bus enables the use of multiple separate heat pipe assemblies instead of using a single heat pipe assembly spanning the distance from heat source to cold plate. The use of a thermal bus can decrease the orientation effects as well as decrease the travel length of any single heat pipe assembly. In addition, the use of multiple heat pipe assemblies enables each individual heat pipe assembly to be optimized to meet localized heat transfer characteristics between each heat source, the thermal bus, and the cold plate. Such optimization can include the use of differently sized heat pipes, wick structures within the heat pipe, and working fluid used within the heat pipe. The thermal bus provides an intermediate thermal transfer from one heat pipe assembly serially coupled to another heat pipe assembly, thereby enabling multiple serially coupled heat pipe assemblies to transfer heat from a given heat source to the cold plate at the edge of the electronics board.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes multiple heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes one or more swivel joints, each configured to provide one or more fluid paths between the cooling door and the frame. The cooling door assembly includes separate and independent fluid paths, where fluid is separately provided to each independent fluid path. Different groups of heat exchangers are coupled to each independent fluid path. In the event of failure of one of the independent fluid paths, the other independent fluid path(s) remain operational.