摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes multiple heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes one or more swivel joints, each configured to provide one or more fluid paths between the cooling door and the frame. The cooling door assembly includes separate and independent fluid paths, where fluid is separately provided to each independent fluid path. Different groups of heat exchangers are coupled to each independent fluid path. In the event of failure of one of the independent fluid paths, the other independent fluid path(s) remain operational.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
A cooling door assembly includes a frame and a cooling door coupled to the frame. The cooling door includes one or more heat exchangers. The frame is configured to mount to the back of a server rack or other electronics enclosure in such a manner that the cooling door opens to allow access to the electronics servers within the server rack while maintaining a fluidic connection to an external cooling system. The frame is coupled to the external cooling system and the cooling door includes swivel joints configured to provide a fluid path between the cooling door and the frame. In this manner, the frame remains in a fixed position, while the cooling door is configured to rotate relative to the frame so as to open and close, while maintaining the fluid path through the swivel joint.
摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
The rear panel of an electronics enclosure includes one or more heat exchangers. The rear panel can be cooling door configured to provide access to the cables and equipment located within the electronics enclosure. Such access can be provided by swinging the door open on hinges like a standard door. In the case where there are multiple heat exchangers, the door can be configured into segments, one segment per heat exchanger, and each segment includes hinges so as to be opened independently from the other segments. In some embodiments, each segment swivels open like a standard door. In other embodiments, each segment is configured to swivel up or down about a horizontal axis. In still other embodiments, each segment is configured to be disconnected from the electronics enclosure and moved out of the way, in which case each heat exchanger is connected using either flexible tubing that can be bent out of the way or quick disconnects. In other embodiments, the entire rear door, or each segment of the rear door, can be configured to slide open and closed like a drawer.
摘要:
A duct work assembly is coupled to an end of an electronics enclosure that houses one or more heat generating devices, such as electronics servers. The duct work assembly includes individual duct guides that each have a deformable end, which is configured to locally deform around the electrical connection lines extending from the rear of one or more electronics servers. The deformable end can be made of bristles, as in a brush, or foam that includes slits and/or holes.
摘要:
A cooling system includes a re-configurable duct work assembly for a server rack or other electronics enclosure. Heat generating devices are positioned within the electronics enclosure and heat exchangers are coupled to the heat generating devices via the duct work. The duct work is positioned within a plenum between the back of the electronics servers and the heat exchangers. The interior of the electronics enclosure is conceptually segmented into heat zones. The duct work is used to selectively direct heated air to the heat exchangers. In some embodiments, the heated air output from a single heat zone is directed by the duct work to a corresponding single heat exchanger. In other embodiments, the heated air output from a group of adjacent heat zones is combined within a single duct work guide that directs the combined heated air to a corresponding number of adjacent heat exchangers.
摘要:
A duct work assembly is coupled to an end of an electronics enclosure that houses one or more heat generating devices, such as electronics servers. The duct work assembly includes individual duct guides that each have a deformable end, which is configured to locally deform around the electrical connection lines extending from the rear of one or more electronics servers. The deformable end can be made of bristles, as in a brush, or foam that includes slits and/or holes.
摘要:
A cooling system is used to cool heat generating devices within a personal computer. The cooling system has a first fluid loop and an expandable array of one or more second fluid loops. For each of the second fluid loops, heat generating devices transfer heat to fluid flowing through corresponding heat exchanging devices in the loop. Heat is transferred from the fluid in each second fluid loop to a thermal bus of the first fluid loop via a thermal interface. The second fluid loop can be a pumped fluid loop or can include a heat pipe. Within the first fluid loop, a fluid is continuously pumped from the thermal bus to a fluid-to-air heat exchanging system and back to the thermal bus. Heat transferred to the thermal bus from the first fluid loop is transferred to the fluid in the second fluid loop passing through the thermal bus. The heated fluid is pumped through the fluid-to-air heat exchanging system where the heat is transferred from the fluid to the ambient. The thermal bus provides a modular, scalable cooling system which allows for the expansion of cooling capacity without breaking the fluid lines.