Abstract:
A lighting system for illuminating a target area, including a substantially planar mounting surfaced disposed adjacent and substantially parallel to the plane of the target area, and a first plurality of collimated light sources mounted to the mounting surface and disposed to emit in a first orientation at a first predetermined angle from the mounting surface; wherein the plurality of light sources are arranged for overlapping illumination of a region of the target area, and the region is illuminated with substantially uniform intensity at a substantially common angle of incidence.
Abstract:
An electro-optical, ridge-waveguide device and method for its fabrication utilizes a polyimide ridge-protection layer, which provides good ridge protection/planarization while minimizing parasitic capacitance. A silicon oxide interlayer is used between a metal contact layer and the polyimide. This interlayer facilitates the adhesion between the metal contact layer and the underlying device since good adhesion can be obtained between the silicon oxide layer and the polyimide layer and between the metal layer and silicon oxide layer. Preferably, the polyimide is roughened to increase the surface area contact between the polyimide layer and silicon oxide layer to further increase adhesion and thus the pull-off force required to separate the metal contact layer from the device. While such roughening can be achieved through plasma etching, in a preferred embodiment, the polyimide layer is roughened by patterned etching. Specifically, a patterned photoresist is used as a etch-protection layer to form a series of wells in the polyimide layer that have a pitch between 1 and 20 microns.
Abstract:
A semiconductor device having a quantum well structure, the quantum well structure having: a first quantum well layer for forming a quantum well for electrons, the first quantum well layer having a first band structure; a second quantum well layer for forming a quantum well for holes, the second quantum well layer having a second band structure different from the first band structure; and an intermediate layer interposed between the first and second quantum well layers having a third band structure different from the first and second band structures, wherein the first quantum well layer forms a barrier to holes, and the second quantum well layer forms a barrier to electrons. Semiconductor devices having quantum well structures different from conventional type I and II quantum well structures are provided.