摘要:
Optical measurement devices including one or more sealing assemblies are described. The sealing assemblies are configured for use at relatively high temperatures and pressures, such as temperatures over 200 degrees F. and pressures over 10,000 psi. The sealing assemblies can include a deformable seal element surrounded on each side by a backup seal element. In some examples, the deformable seal element is formed of a material selected from a group consisting of a fluoroelastomer or polytetrafluoroethylene, and the backup seal elements are formed of a material selected from a group consisting of flexible graphite or metal foil. Optionally, at least one additional seal element functioning as an extrusion barrier can be placed on the opposite side of one or both backup seal elements from the deformable seal element. The additional seal element can be formed of polyether ether ketone or flexible graphite, for example. Additional devices and assemblies are described.
摘要:
Optical measurement devices including one or more sealing assemblies are described. The sealing assemblies are configured for use at relatively high temperatures and pressures, such as temperatures over 200 degrees F. and pressures over 10,000 psi. The sealing assemblies can include a deformable seal element surrounded on each side by a backup seal element. In some examples, the deformable seal element is formed of a material selected from a group consisting of a fluoroelastomer or polytetrafluoroethylene, and the backup seal elements are formed of a material selected from a group consisting of flexible graphite or metal foil. Optionally, at least one additional seal element functioning as an extrusion barrier can be placed on the opposite side of one or both backup seal elements from the deformable seal element. The additional seal element can be formed of polyether ether ketone or flexible graphite, for example. Additional devices and assemblies are described.
摘要:
A system and method for solid-liquid separation and analysis of drilling fluids is described. The method includes heating a retort body to a pre-determined temperature, with an inner wall of the retort body at least partially defines a chamber within the retort body. A sample drilling fluid may be automatically injected into the inner chamber, and a film of the sample drilling fluid may be generated on the inner wall of the retort body. The film may be separated into a solid portion and a vapor. The method may further include collecting vapor using a vent that provides fluid communication with the inner chamber, and condensing the vapor into a fluid portion of the film. The volume of the fluid portion may them be automatically measured.
摘要:
Systems and methods for direct and indirect measurement of the density of a fluid which exhibits sag characteristics is disclosed. The sag measurement system includes a test container for holding a fluid mixture to be analyzed and a suction port on the test container. A pump is coupled to the suction port for circulating the fluid mixture from the test container through a circulation loop. A measurement device is coupled to the circulation loop and a return port directs the fluid mixture from the circulation loop back to the test container at substantially the same vertical location as the suction port. The fluid mixture flowing through the circulation loop passes through the measurement device before returning to the test container through the return port. The measurement device is operable to monitor the particle distribution of the fluid mixture as it changes due to gravity.
摘要:
A method for quantitatively determining dynamic barite sag in drilling fluids includes measuring rheological properties with viscometers and/or rheometers, and introducing the parameters into an equation to obtain the sag rate.
摘要:
A method and apparatus for automatically testing high pressure and high temperature sedimentation of slurries is described. The method includes pumping a sample drilling fluid into a test cell. The sample drilling fluid may be subjected to a pre-determined pressure and a pre-determined temperature for a pre-determined period of time. The test cell may also be oriented at non-vertical angle. The sample drilling fluid may be pumped out of the test cell and the density of the sample drilling fluid automatically measured relative to a displaced fluid volume of the sample drilling fluid.
摘要:
A system and method for solid-liquid separation and analysis of drilling fluids is described. The method includes heating a retort body to a pre-determined temperature, with an inner wall of the retort body at least partially defines a chamber within the retort body. A sample drilling fluid may be automatically injected into the inner chamber, and a film of the sample drilling fluid may be generated on the inner wall of the retort body. The film may be separated into a solid portion and a vapor. The method may further include collecting vapor using a vent that provides fluid communication with the inner chamber, and condensing the vapor into a fluid portion of the film. The volume of the fluid portion may them be automatically measured.
摘要:
Systems and methods for direct and indirect measurement of the density of a fluid which exhibits sag characteristics is disclosed. The sag measurement system includes a test container for holding a fluid mixture to be analyzed and a suction port on the test container. A pump is coupled to the suction port for circulating the fluid mixture from the test container through a circulation loop. A measurement device is coupled to the circulation loop and a return port directs the fluid mixture from the circulation loop back to the test container at substantially the same vertical location as the suction port. The fluid mixture flowing through the circulation loop passes through the measurement device before returning to the test container through the return port. The measurement device is operable to monitor the particle distribution of the fluid mixture as it changes due to gravity.
摘要:
A water vehicle includes a longitudinally elongated hull having a first portion adapted to separate the water by movement of the hull through the water. Foam is generated by the separation of the water. A second portion of the hull is adapted to contain the foam underneath the hull. The vehicle will be supported during propulsion at least in part by a surface of the foam.
摘要:
Treatment fluids that include magnetic surfactants may be useful in various subterranean operations, e.g., particulate placement operations and drilling operations. For example, some methods may include introducing a treatment fluid into a wellbore penetrating a subterranean formation, the treatment fluid including at least a base fluid and a magnetic surfactant, the magnetic surfactant being a cationic surfactant having a magnetically susceptible counterion.