摘要:
A proton exchange membrane fuel cell includes an anode catalyst layer, a cathode catalyst layer, a proton exchange membrane separating the anode catalyst layer from the cathode catalyst layer, an oxygen inlet configured to supply oxygen to the cathode catalyst layer, and a hydrogen inlet separate from the oxygen inlet and configured to supply hydrogen to the anode catalyst layer. The fuel cell is operable to convert the hydrogen from the hydrogen inlet to hydrogen ions at the anode catalyst layer and to produce an H2O byproduct at the cathode catalyst layer where the oxygen reacts with the hydrogen ions. The fuel cell includes a water outlet for the H2O byproduct that is separate from the oxygen inlet.
摘要:
A proton exchange membrane fuel cell includes an anode catalyst layer, a cathode catalyst layer, a proton exchange membrane separating the anode catalyst layer from the cathode catalyst layer, an oxygen inlet configured to supply oxygen to the cathode catalyst layer, and a hydrogen inlet separate from the oxygen inlet and configured to supply hydrogen to the anode catalyst layer. The fuel cell is operable to convert the hydrogen from the hydrogen inlet to hydrogen ions at the anode catalyst layer and to produce an H2O byproduct at the cathode catalyst layer where the oxygen reacts with the hydrogen ions. The fuel cell includes a water outlet for the H2O byproduct that is separate from the oxygen inlet.
摘要:
New poly(anhydride)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
New sulfur-based polyesters have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
New phosphorous-based polyesters have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
A method of fabricating submicron textures on glass and transparent conductors includes depositing a plurality of silica or silica-coated polystyrene nanospheres onto a substrate, etching the silica coated polystyrene nanospheres and the substrate to form a plurality of nanocone projections on a first side of the substrate, and depositing a transparent conducting oxide onto the substrate on top of the nanocone projections.
摘要:
New sulfur-based polyesters have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
New phosphorous-based polyesters have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
New poly(pyrocarbonate)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
摘要:
New poly(ketone)-based polymers have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.