摘要:
Portal localization radiographic elements and a process of confirming the targeting of a beam of X-radiation of from 4 to 25 MVp using the portal radiographic elements are disclosed. The X-radiation is directed at a subject containing features that are identifiable by differing levels of X-radiation absorption. After a first X-radiation exposure a shield containing a portal is placed between the subject and the source of X-radiation. X-radiation is directed at the subject through the portal. In each instance the X-radiation leaving the subject impinges on a metal screen, causing it to emit electrons, and the electrons impinge upon a fluorescent screen, causing it to emit light, creating during the first and second exposures first and second superimposed latent images in the radiographic element. A processor is employed to convert the latent images to viewable silver images from which intended targeting of the X-radiation passing through the portal in relation to the identifiable features of the subject is realized. The processor relies on attenuation of an infrared beam of a wavelength from 850 to 1100 nm by the radiographic element for activation, and at least one of the hydrophilic colloid layers of the radiographic element contains particles having an index of refraction in the wavelength range of from 850 to 1100 nm that differs from that of the hydrophilic colloid by at least 0.2 to create a specular density capable of attenuating the infrared beam and activating the processor.
摘要:
An element capable of forming a silver image is disclosed containing insufficient radiation-sensitive silver halide grains to render the element detectable by an infrared sensor. The element has been modified to increase infrared specular density by the inclusion of, in a hydrophilic colloid dispersing medium, particles (a) being removable from the element during a rapid access processing cycle, (b) having a mean size of from 0.3 to 1.1 .mu.m and at least 0.1 .mu.m larger than the mean grain size of the radiation-sensitive grains, and (c) having an index of refraction at the wavelength of the infrared radiation that differs from the index of refraction of the hydrophilic colloid by at least 0.2.
摘要:
Portal radiographic elements and a process of confirming the targeting of a beam of X-radiation of from 4 to 25 MVp using the portal radiographic elements are disclosed. The X-radiation is directed at a shield containing a port to create a beam. The beam is directed at a selected anatomical feature of a patient over a period of at least 30 seconds. The portion of the beam that passes through the patient impinges on a metal screen, causing it to emit electrons, and the electrons impinge upon a fluorescent screen, causing it to emit light that exposes a portal verification radiographic element to create a latent image in light-sensitized silver halide grains. A processor is employed to convert the latent image to a viewable silver image from which intended targeting of the X-radiation beam can be verified. The processor relies on attenuation of an infrared beam of a wavelength from 850 to 1100 nm by the radiographic element for activation, and at least one of the hydrophilic colloid layers of the radiographic element contains desensitized silver halide grains to increase the specular density of the radiographic element in the wavelength range of infrared sensors that control the processor.
摘要:
The problem of sensing the presence of radiographic elements using infrared sensors that occurs when a radiographic element contains one or more very thin tabular grain emulsions a total silver coating coverage of less than 30 mg/dm.sup.2 is addressed by placing particles in one or more non-emulsion hydrophilic colloid layers. The particles are removable during rapid access processing, have a mean equivalent circular diameter of from 0.3 to 1.1 .mu.m, and have an index of refraction at the wavelength of the infrared radiation that differs from the index of refraction of the hydrophilic colloid by at least 0.2.
摘要:
A blue-sensitive radiographic silver halide film comprises a silver halide emulsion layer comprising predominantly tabular silver halide grains that have an aspect ratio of at least 15, a grain thickness of at least 0.1 &mgr;m, and comprise at least 90 mol % bromide and up to 4 mol % iodide, based on total silver halide. Substantially all of the iodide is present in an internal localized portion of the tabular silver halide grains that excludes the surface of the grains. The tabular silver halide grains are dispersed in a hydrophilic polymeric vehicle mixture comprising at least 0.5% of oxidized gelatin, based on the total dry weight of the polymeric vehicle mixture in the emulsion layer. The tabular silver halide grains are spectrally sensitized using a combination of spectral sensitizing dyes to provide increased speed and reduced dye stain. The dyes have maximum J-aggregate absorptions on the tabular silver halide grains of from about 380 to about 500 nm, wherein the maximum J-aggregate absorption of one spectral sensitizing dye is from about 20 to about 50 nm lower in wavelength than the maximum J-aggregate absorption of the second spectral sensitizing dye.
摘要:
A radiation-sensitive film for reproducing digitally stored medical diagnostic images through a series of laterally offset exposures by a controlled radiation source followed byprocessing in 90 seconds or less including development, fixing and drying is disclosed. The film exhibits an average contrast in the range of from 1.5 to 2.0, measured over a density above fog of from 0.25 to 2.0. An emulsion is provided in which silver bromochloride grains provided (a) containing at least 10 mole percent bromide, based on silver, (b) having a mean equivalent circular diameter of less than 0.40 .mu.m, (c) exhibiting an average aspect ratio of less than 1.3, and (d) coated at a silver coverage of less than 40 mg/dm.sup.2. Adsorbed to the surfaces of the silver bromochloride grains is at least one spectral sensitizing dye having an absorption half peak bandwidth in the spectral region of exposure by the controlled exposure source. The film also contains an infrared opacifying dye capable of reducing specular transmission through the film before, during and after processing to less than 50 percent, measured at a wavelength within the spectral region of from 850 to 1100 nm.
摘要:
A radiographic material containing tabular silver halide grains also includes an amido compound as an antifoggant precursor that can slowly release an antifoggant over time. These compounds are present in reactive association with the silver halide in tabular silver halide emulsion layers, and are present in an amount of at least 0.5 mmol/mol of silver. The radiographic materials are protected from fog during storage particularly in high temperature environments.
摘要:
A radiographic silver halide film useful for mammography comprises a support having a cubic grain silver halide emulsion on one side. The cubic grains are spectrally sensitized with a combination of first and second spectral sensitizing dyes that provides a combined maximum J-aggregate absorption of from about 540 to about 560 nm. The first spectral sensitizing dye is an anionic benzimidazole-benzoxazole carbocyanine and the second spectral sensitizing dye is an anionic oxycarbocyanine. The first and second spectral sensitizing dyes are present in a molar ratio of from about 0.25:1 to about 4:1.
摘要:
Radiographic silver halide materials coated onto a support contain a portion of the developer chemistry incorporated within the radiographic film. The remainder of the developer chemistry is contained in a developer solution. Use of a reflective support permits the developed materials to be viewed without a light box.
摘要:
A blue-sensitive, radiographic silver halide film comprises a silver halide emulsion layer comprising predominantly tabular silver halide grains that have an aspect ratio of at least 15, a grain thickness of at least 0.1 &mgr;M, and comprise at least 90 mol % bromide and from about 0.5 to about 2.75 mol % iodide, based on total silver halide. Substantially all of the iodide is present in an internal localized portion of the tabular silver halide grains that excludes the surface of the grains. The tabular silver halide grains are dispersed in a hydrophilic polymeric vehicle mixture comprising at least 0.5% of oxidized gelatin, based on the total dry weight of the polymeric vehicle mixture in the emulsion layer. In addition, the tabular grain emulsion includes a mercapto-substituted benzothiazole, benzoxazole, or benzimidazole to provide desired image tone and processability.