摘要:
A magnetic recording disk drive uses side-by-side read/write heads formed on head carriers that are substantially identical for both top and bottom disk surfaces. Thus, a common head carrier functions as a single manufacturable part usable for both top and bottom disk surfaces. The common head carrier has a trailing end with a pattern of components formed on it that includes three side-by-side transducers and sets of terminal pads. In the read/write/read side-by-side head arrangement, the first element is a center write element, such as an inductive coil, and the second and third elements are read elements, such as magnetoresistive read elements, that are generally equally spaced from the center write element. In common carriers to be used for the top disk surfaces, one of the read elements is electrically connected to the read/write channel of the disk drive, and in common carriers to be used for the bottom disk surfaces, the other read element on the common carrier is electrically connected to the read/write channel. The disk drive thus operates in cylinder mode with side-by-side heads using a common carrier for both top and bottom disk surfaces.
摘要:
A magnetic recording disk drive uses side-by-side read/write heads formed on head carriers that are identical for both top and bottom disk surfaces. Thus, a common head carrier functions as a single manufacturable part usable for both top and bottom disk surfaces. The common head carrier has a trailing end with a pattern of components formed on it that includes three side-by-side transducers (two read elements equally spaced about a center write element) and five terminal pads, one of which is a common pad, and all of the electrical connectors interconnecting the five terminal pads with the three transducers. There are only three terminal pads for the two read elements, with one of the read terminal pads being a common terminal pad that is electrically connected to both read elements. During assembly of the disk drive, the common carrier, when used as the top carrier, has a first read terminal pad and the common terminal pad connected to the leads on the suspension. When used as the bottom carrier, the second read terminal pad and the common terminal pad are connected to the leads on the suspension. Thus, only one carrier common to both top and bottom sides of the disk needs to be manufactured. The uniqueness of the top and bottom carriers is obtained by the wiring connection of the read terminal pads to the leads on the suspensions.
摘要:
The error tolerance of an array of m storage units is increased by using a technique referred to as “dodging.” A plurality of k stripes are stored across the array of storage units in which each stripe has n+r elements that correspond to a symmetric code having a minimum Hamming distance d=r+1. Each respective element of a stripe is stored on a different storage unit. An element is selected when a difference between a minimum distance of the donor stripe and a minimum distance of a recipient stripe is greater or equal to 2. The selected element is also stored on a storage unit having no elements of the recipient stripe. A lost element of the recipient stripe is then rebuilt on the selected element.
摘要:
Embodiments of the invention relate to systematic migration of data. Data is streamed to data storage and stored in a virtual storage device (VSD). Stored data is systematically migrated from the VSD to a higher density VSD, while streaming of data is also switched to the higher density VSD. Source and target data extents are maintained and merged upon completion of the data migration, together with linking the streamed data blocks with the migrated data blocks in the order presented in the input stream.
摘要:
A method according to one embodiment includes gathering monitor data information from a plurality of memory devices having finite endurance and/or retention, the monitor data being data of known content stored in dedicated memory cells of known write cycle count; analyzing the monitor data information; and taking an action relating to at least one of the devices based on the analyzing. Additional systems, methods, and computer program products are also disclosed.
摘要:
The error tolerance of an array of m storage units is increased by using a technique referred to as “dodging.” A plurality of k stripes are stored across the array of storage units in which each stripe has n+r elements that correspond to a symmetric code having a minimum Hamming distance d=r+1. Each respective element of a stripe is stored on a different storage unit. An element is selected when a difference between a minimum distance of the donor stripe and a minimum distance of a recipient stripe is greater or equal to 2. The selected element is also stored on a storage unit having no elements of the recipient stripe. A lost element of the recipient stripe is then rebuilt on the selected element.
摘要:
A zoned recording, embedded servo disk drive includes a sector architecture in which the recording head locates and identifies data sectors without using data identification (ID) fields, but instead using information obtained from electronic storage and from servo sectors which need not be adjacent to the data sectors. Each data track contains servo information and data, but not data sector ID information, and is circumferentially divided into identical segments. Included in each track segment is a number of data regions separated from one another by servo sectors. The data regions in each track segment may contain partial data sectors and complete data sectors, and each data sector is identified by a number indicating its location relative to the beginning of the track segment. After movement of the head to another data zone and after power to the servo electronics is restored on recovery from a power saving mode, the correct data sector for reading or writing is located by use of the number of the data sector following the first servo sector read by the head. This avoids the latency penalty that would occur if the disk drive had to wait until the next beginning-of-track index mark.
摘要:
A method in one embodiment includes writing first data to a first memory device of a memory array at a first number of writes per unit time; writing second data to a second memory device of the memory array at a second number of writes per unit time; and skewing expected wearout times of the memory devices by making the second number of writes per unit time less than the first number of writes per unit time. A method in another embodiment includes writing first data to a first memory device of a memory array; writing second data to a second memory device of the memory array; and skewing expected wearout times of the memory devices by making a number of available storage units on the second memory device less than a number of available storage units on the first memory device.
摘要:
A method according to one embodiment includes gathering information about monitor data from a plurality of memory devices having finite endurance and/or retention, the monitor data being (i) data of known content stored in dedicated memory cells of known write cycle count, and (ii) write protected for preventing the monitor data from being overwritten with user data; analyzing the monitor data information; and taking an action relating to at least one of the devices based on the analyzing. Additional systems, methods, and computer program products are also disclosed.
摘要:
A method according to one embodiment includes gathering monitor data information from a plurality of memory devices having finite endurance and/or retention, the monitor data being data of known content stored in dedicated memory cells of known write cycle count; analyzing the monitor data information; and taking an action relating to at least one of the devices based on the analyzing. Additional systems, methods, and computer program products are also disclosed.