摘要:
A light block material disposed over the photosensitive region of a switching device (e.g., TFT) of a radiation imager is disclosed. The light block material prevents optical photons emitted from a scintillator from passing into the switching device and being absorbed. Cross-talk and noise in the imager are thereby reduced. Also, non-linear pixel response and spurious signals passing to readout electronics are avoided. Optionally, opaque caps comprising the same light block material may be included in the imager structure. The caps cover contact vias filled with a common electrode and located in the contact finger region of the imager. The integrity of the filled vias is thereby maintained during subsequent processing. Also disclosed is a radiation imager containing these structures.
摘要:
A solid state imager is provided that comprises an imaging array of gated photodiodes. The imager comprises a plurality of photosensor pixels arranged in a pixel array, and each of the photosensor pixels includes a photodiode having a sidewall, the sidewall having a gate dielectric layer disposed thereon, and a field plate disposed around the photodiode body. The field plate comprises amorphous silicon disposed on the gate dielectric layer and extends substantially completely around the sidewall of said photodiode. The field plate is electrically coupled to the common electrode of the imaging array so that the field plate creates an electric field around the photodiode body in correspondence with the potential of said common electrode. A method of fabricating the gated photodiode array is also provided.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.
摘要:
A radiation imager having a plurality of photosensitive elements has a two-tier passivation layer disposed between the top patterned common electrode contact layer and respective photosensor islands. The top passivation layer is a polymer bridge member disposed between adjacent photodiodes so as to isolate defects such as moisture-induced leakage in any bridge island layer to the two adjacent photodiodes spanned by the bridge island.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.
摘要:
A radiation imager includes a light sensitive imaging array, a barrier layer formed over the light sensitive imaging array, a continuous polymer layer formed over the barrier layer, and a scintillator formed directly on the continuous polymer layer. The continuous polymer layer improves the adherence of the scintillator by reducing delamination especially under adverse environmental conditions.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.
摘要:
RD-25953-17-A method of fabricating an imager array having a plurality of pixels is provided in which each pixel is made up of a photodiode and a corresponding thin film transistor (TFT) switching device, the method including the steps of depositing materials to form the photodiode island and to form a TFT body over a gate electrode, then depositing a layer of source/drain metal over the silicon layers of the TFT body, and over a common dielectric layer, removing sections of the source/drain metal layer to expose a portion of the silicon layers of the TFT body, but leaving regions of sacrificial source/drain metal over the photodiode islands, and forming a back channel in the TFT body by a back channel etch step. The method further includes then removing the sacrificial regions of source/drain metal from above the photodiode islands, and depositing a passivation layer over the entire exposed surface of the array.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.
摘要:
A radiation imager is disclosed that is resistant to degradation due to moisture by either contact pad corrosion, guard ring corrosion or by photodiode leakage. A contact pad of a large area imager is disclosed that is formed into three distinct and electrically connected regions. The resulting structure of the contact pad regions forms reliable contact that is resistant to corrosion damage. Also disclosed is a data line of an imager, or a display, the resistance of which is reduced by patterning an aluminum (Al) line on top of a transistor island structure, with the formed data line preferably being encapsulated. In addition, a guard ring having first and second regions and photosensitive element are disclosed. The second region comprises an electrical contact between ITO and underlying metal and a second tier which acts as a moisture barrier and is preferably disposed at the corner of the guard ring and separated from the contact pads of the imager in such a manner as to minimize corrosion. The photosensitive element has a multitier passivation layer disposed between the top contact layer and an amorphous silicon photosensor island except for a selected contact area on the top surface of the photosensor island, where the top contact layer is in electrical contact with the amorphous silicon material of the photosensor island. The passivation layer includes a first tier inorganic barrier layer which is disposed at least over the sidewalls of the photosensor island.