摘要:
A power management system for managing power in a wireless device having a SPS receiver, communication device and a power source, the power management is described. The power management system may include a real-time clock, an input/output device, a radio frequency front-end and a SPS engine in signal communication with the real-time clock, input/output device and radio frequency front-end, the SPS engine capable of powering down itself, the input/output device and radio frequency front-end in response to determining a mode of operation.
摘要:
A power management system for managing power in a wireless device having a SPS receiver, communication device and a power source, the power management is described. The power management system may include a real-time clock, an input/output device, a radio frequency front-end and a SPS engine in signal communication with the real-time clock, input/output device and radio frequency front-end, the SPS engine capable of powering down itself, the input/output device and radio frequency front-end in response to determining a mode of operation.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system also includes a memory that includes a GPS library having a user interface, a tracker interface, and an operating system interface. A processor runs functions provided by the interfaces.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker to a host computer. The tracker hardware interface receives positioning information from the space vehicle tracker and communicates with the host computer using predefined messages. The host based positioning system includes a layered protocol approach to enable user applications on a host computer to access data from tracker hardware device.
摘要:
The present invention uses a map database which is created with the view of optimization in terms of size and complexity, so that it can be easily embedded into a navigation chip. The optimized map database is referred to as a “mini-map” database. The mini-map database easily integrates with the position calculation routine. The algorithm for position calculation includes a map-matching component, which is referred to as the “mini-map-matching” (MMM) algorithm, which is implemented on the navigation chip. Application of the present invention includes any navigation system for vehicles and/or pedestrians. The navigation system may include an inertial sensor, such as a dead-reckoning (DR) sensor, for further improvement in calculated positional accuracy when satellite signals are degraded due to environmental factors.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system also includes a memory that includes a GPS library having a user interface, a tracker interface, and an operating system interface. A processor runs functions provided by the interfaces.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system includes a layered approach to enable user applications on a host computer to access data from tracker hardware.
摘要:
The present invention uses a map database which is created with the view of optimization in terms of size and complexity, so that it can be easily embedded into a navigation chip. The optimized map database is referred to as a “mini-map” database. The mini-map database easily integrates with the position calculation routine. The algorithm for position calculation includes a map-matching component, which is referred to as the “mini-map-matching” (MMM) algorithm, which is implemented on the navigation chip. Application of the present invention includes any navigation system for vehicles and/or pedestrians. The navigation system may include an inertial sensor, such as a dead-reckoning (DR) sensor, for further improvement in calculated positional accuracy when satellite signals are degraded due to environmental factors.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker. The tracker hardware interface receives positioning information from the space vehicle tracker. The host based positioning system includes a layered approach to enable user applications on a host computer to access data from tracker hardware.
摘要:
Methods and systems consistent with the present invention provide a host based positioning system. The host based positioning system includes a tracker hardware interface that connects to a dedicated hardware space vehicle tracker to a host computer. The tracker hardware interface receives positioning information from the space vehicle tracker and communicates with the host computer using predefined messages. The host based positioning system includes a layered protocol approach to enable user applications on a host computer to access data from tracker hardware device.