摘要:
Various examples provide a semiconductor patch. The patch includes a glass core having first and second opposed major surfaces extending in an x-y direction. The patch further includes a conductive via extending from the first major surface to the second major surface substantially in a z-direction. The patch further includes a bridge die embedded in a dielectric material in communication with the conductive via. The patch further includes an overmold at least partially encasing the glass core.
摘要:
Semiconductor packages with interconnects having passivation thereon is disclosed. The passivation layer may be any suitable dielectric material that may overlie a build-up dielectric layer and metal traces of an interconnect layer in a semiconductor package. Via holes may be formed in the build-up dielectric and the passivation layer may be removed from the bottom of the via hole. By removing the passivation layer at the bottom of the via hole, any residual build-up dielectric may also be removed from the bottom of the via hole. Thus removal of the residual build-up dielectric may not require a desmear process that would otherwise roughen metal and/or dielectric surfaces. The resulting smoother metal and/or dielectric surfaces enabled by the use of the passivation layer may allow greater process latitude and/or flexibility to fabricate relatively smaller dimensional interconnect features and/or relatively improved signaling frequency and integrity.
摘要:
The present description addresses example methods for forming multi-chip microelectronic devices and the resulting devices. The multiple semiconductor die of the multichip package will be attached to a solid plate with a bonding system selected to withstand stresses applied when a mold material is applied to encapsulate the die of the multichip device. The solid plate will remain as a portion of the finished multi-chip device. The solid plate can be a metal plate to function as a heat spreader for the completed multi-chip device.
摘要:
Some example forms relate to a method of nondestructively measuring a geometry of an electrical component on a substrate. The method includes directing light at the electrical component. The light is at an original intensity. The method further includes measuring light that is reflected off of the electrical component. The reflected light includes undiffracted light and diffracted light. The diffracted light is at a diffracted intensity. The method further includes determining a ratio of diffracted intensity to original intensity and utilizing the ratio to determine a geometry of the electrical component.