摘要:
The invention provides a genetically modified Cyanobacteria having a construct comprising DNA fragments encoding pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adh) enzymes obtained from the Zymomonas mobilis plasmid pLOI295. The Cyanobacteria are capable of producing ethanol in recoverable quantities of at least 1.7 &mgr;mol ethanol per mg of chlorophyll per hour.
摘要:
The invention relates to the genetic modification of Cyanobacteria for the production of ethanol, and more particularly, to the genetic modification of Cyanobacteria by incorporating the genetic information encoding for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adh).
摘要:
This invention provides an attenuated virus which comprises a modified viral genome containing nucleotide substitutions engineered in multiple locations in the genome, wherein the substitutions introduce synonymous deoptimized codons into the genome. The instant attenuated virus may be used in a vaccine composition for inducing a protective immune response in a subject. The invention also provides a method of synthesizing the instant attenuated virus. Further, this invention further provides a method for preventing a subject from becoming afflicted with a virus-associated disease comprising administering to the subject a prophylactically effective dose of a vaccine composition comprising the instant attenuated virus.
摘要:
The present provides attenuated influenza viruses comprising a modified viral genome containing a plurality of nucleotide substitutions. The nucleotide substitutions result in the rearrangement of preexisting codons of one or more protein encoding sequences and changes in codon pair bias. Substitutions of non-synonymous and synonymous codons may also be included. The attenuated influenza viruses enable production of improved vaccines and are used to elicit protective immune responses.
摘要:
This invention provides an attenuated virus which comprises a modified viral genome containing nucleotide substitutions engineered in multiple locations in the genome, wherein the substitutions introduce synonymous deoptimized codons into the genome. The instant attenuated virus may be used in a vaccine composition for inducing a protective immune response in a subject. The invention also provides a method of synthesizing the instant attenuated virus. Further, this invention further provides a method for preventing a subject from becoming afflicted with a virus-associated disease comprising administering to the subject a prophylactically effective dose of a vaccine composition comprising the instant attenuated virus.