摘要:
A tracking error signal generation apparatus and method which utilizes confocal detection with a split detector and a differencing circuit for generation of tracking error signals. A first lens is positioned in the path of a light beam returning from an optical medium. A pinhole is positioned in the path of the light beam after the first lens and proximate to the focal plane of the first lens. A second lens is positioned in the path of the light beam after the pinhole, and a split detector, having equal halves is positioned in the path of the light beam after the second lens. A differencing circuit is operatively coupled to each of the halves of the split detector. In operation, a light beam is focused by an optical head onto a track in the optical medium, and the reflection of the beam from the optical medium is directed through the first lens, through the pinhole, through the second lens, and onto the split detector. When the focus of the light beam is centered on the track, the reflected light reaching the split detector is evenly distributed on the two halves of the detector, such that the differencing circuit will generate a tracking error signal (TES) having nominally a zero value. When the focus of the light beam is off-center with respect to the track, the reflected light received by detector is unevenly distributed on the two halves of the detector such that the differencing circuit generates a non-zero tracking error signal, which will be of positive or negative value depending upon the direction off-center of the light beam focus spot. The tracking error signals thus generated are communicated to a servo system which will reposition the optical head to maintain the light beam focus spot on the center of the track.
摘要:
An improved focus error signal generator device and an optical data delivery and detection system including an optical lens disposed in the path of a return read beam and a birefringent plate disposed in the path of the return beam of light after the optical lens, wherein the birefringent plate provides for a first and second focal plane of corresponding first and second polarization. A pinhole is disposed in the path of the return read beam after the birefringent plate and in close proximity to first and second focal planes. A polarizing beam splitter is positioned after the second focal plane and serves to split the return read beam into two light beams of first and second polarization. First and second detectors are disposed in the path of corresponding first and second polarization light beams. The detectors are connected to the inputs of an electrical differencing circuit that has an output to an optical head servo system.
摘要:
Digital data bits are stored as discrete-level reflection microholograms in a multi-depth digital optical data storage system. Reference and signal beams are incident in a counterpropagating geometry on opposite faces of a tape. The reflection microholograms are stored at the coinciding focus of the reference and signal beams. The holograms are stored at the diffraction limit of high-N.A. optics, and have relatively high grating frequencies and small sizes. Dynamic aberration compensators correct for the depth-varying spherical aberration imparted to the beams by the medium. Multiple mutually-incoherent lasers are used for parallel storage and retrieval to increase data transfer rates. Achievable densities and signal-to-noise ratios are substantially higher than for index-perturbation or transmission hologram storage methods.
摘要:
A focus error signal generator device including first and second optical lenses disposed in the respective paths of first and second light beams derived from the return read beam wherein the first and second optical lens have corresponding points of focus, and first and second detectors disposed in the corresponding paths of the first and second light beams located after the points of focus. First and second pinholes are disposed in the corresponding paths of the first and second light beams after the corresponding optical lens and before the corresponding detector, and an electrical differencing circuit having inputs to the first and second detectors and an output to an optical head servo system. A method for focus error signal includes the steps of focussing first and second light beams derived from a return read beam at corresponding first and second points of focus; providing for first and second detectors disposed in the path of corresponding first and second light beams after corresponding first and second points of focus; providing for first and second pinholes in the path of corresponding first and second light beams; and generating a focus error signal related to the difference between the output of the first detector and an output of the second detector. An optical data delivery and detection system comprises a laser source emitting a light beam, an optical head that receives the light beam, optical lenses within the optical head that focus the light beam on an optical storage media, a data detector that receives the light beam on the beam's return path and provides data signals and the focus error generator device described above.
摘要:
An improved focus error signal generator device including two optical lenses in series; a birefringent optical lens followed by a standard optical lens, the lenses being disposed in the path of a return read beam wherein the birefringent optical lens has a first and second focal plane. A pinhole is disposed in the path of the return read beam in close proximity to the first and second focal planes. A polarizing beam splitter is positioned after the second focal plane and serves to split the return read beam into two light beams of polarization associated with the first and second focal planes. First and second detectors are positioned so as to read the two light beams signals output from the polarizing beam splitter and the detectors are connected to an electrical differencing circuit having an output to an optical head servo system.
摘要:
An apparatus comprising a device having calibration data associated therewith, and a calibration tag placed on the device, the calibration tag having encoded thereon the calibration data or a locator identifying where the calibration data can be found. A process comprising calibrating a device to obtain a set of calibration data, generating a calibration tag, the calibration tag having encoded thereon the calibration data or a locator identifying where the calibration data can be found, and placing the calibration tag on the device. Other embodiments are also described and claimed.
摘要:
An optical information storage system using optical storage media including multiple data layers or stacks wherein each of the multiple data stacks has a storage density comparable to a conventional single layer optical disk. The optical data storage system comprises an optical medium having a single dedicated servo layer and multiple data stacks which each contain an embedded servo format, a servo laser beam positioned to maintain a first focus point on the dedicated servo reference layer, a read-write laser beam positioned to maintain a second focus point on one of the data stacks, a first, dedicated servo system which provides focus and tracking error correction according to error signals generated from the dedicated servo layer, and a second, embedded servo system which provides focus and tracking error correction according to error signals generated from the data stacks. The dedicated servo layer, in different embodiments of the invention, may be positioned either below or above the data stacks in the optical medium, or interposed between data stacks. The data stacks may comprise discrete physical data layers or “virtual” data layers defined by a format hologram. The servo and read-write lasers may differ in wavelength and/or polarization.
摘要:
A positive unit magnification reflective head is used to back-reflect a primary light beam, for storing reflection microholograms at the coincident foci of the primary and reflected beams. Imaging the primary beam focus onto itself at positive unit magnification allows increasing system tolerance to tilts and transverse misalignments between the primary and reflective heads. Holograms are stored at multiple depths in a holographic storage medium. Tunable-focus primary and reflective heads are positioned on opposite sides of the storage medium. The reflective head images each storage location onto itself at positive unit magnification. Suitable reflective heads include: two lenses in an f-2f-f configuration and a planar mirror; a lens and a corner cube; a thin lens and a thick lens with a coated reflective back surface; and a thin lens and a back-coated gradient-index (GRIN) lens. To control the polarization of the reflected beam, the corner cube may include a plastic filler bonded on the back of the reflective surface. The filler index of refraction is chosen such that the primary beam is incident on the reflective surface of the corner cube at the critical angle.
摘要:
Thermo-optic tuning apparatuses and techniques that may be used in external cavity lasers are provided. A wavelength selection device may be placed in the external cavity and may include a thermally responsive substrate and tunable optical elements extending therefrom. Heating and heat monitoring actuators may be formed in the substrate itself, with the tunable optical elements being mechanically positioned in the recesses of the substrate for thermo-optic tuning. In some examples, a separate optical path length adjustment element is also placed in the thermally responsive substrate, or elsewhere, for separate frequency tuning. This adjustment element may be part of a control that is detangled from the normal servo controls used in laser tuning.