摘要:
Leached nanocrystalline materials having a high specific surface are particularly useful for storing hydrogen or as catalysts or electrocatalysts in the manufacture electrodes, especially for fuel cells. Such materials can be manufactured by preparing a nanocrystalline material consisting of a metastable composite or alloy of at least two different chemical elements. To be nanocrystalline, this material must have a crystalline structure with the grain size lower than 100 nm. Then, the so prepared nanocrystalline material can be subjected to a leaching treatment in order to eliminate partially or totally one of the elements of the composite or alloy. This leaching results in nanocrystalline materials having a porous structure and, thereby, the requested high specific surface.
摘要:
The invention relates to an improved composite used as a bipolar separator plate in fuel cells. The composite of the invention comprises a steel substrate having a carbon coating thereon, the carbon coating comprises a carbon layer derived by pyrolysis of an acetylenic polymer having a content of carbon of at least 90%, the carbon layer protects the substrate against corrosion and improves long term contact resistivity, the polymer is soluble at a temperature below 110° C. in an organic solvent, and the carbon layer contacts said steel substrate. A process for preparing the composite according to the invention is also disclosed.
摘要:
A catalyst precursor comprising (A) a microporous support, (B) a non-noble metal precursor, and (C) a pore-filler, wherein the micropores of the microporous support are filled with the pore-filler and the non-noble metal precursor so that the micropore surface area of the catalyst precursor is substantially smaller than the micropore surface area of the support when the pore-filler and the non-noble metal precursor are absent is provided. Also, a catalyst comprising the above catalyst precursor, wherein the catalyst precursor has been pyrolysed so that the micropore surface area of the catalyst is substantially larger than the micropore surface area of catalyst precursor, with the proviso that the pyrolysis is performed in the presence of a gas that is a nitrogen precursor when the microporous support, the non-noble metal precursor and the pore-filler are not nitrogen precursors is also provided. Methods of producing the catalyst precursor and the catalyst are provided.
摘要:
Carbon nanotubes are formed on carbon paper by first depositing a metal catalyst on the carbon paper, and passing a feedstock gas containing a source of carbon over the substrate while applying an electrical current thereto to heat the substrate sufficiently to generate a reaction between the catalyst and the feedstock gas. Alternatively, inert gas under pressure is passed through a tubular metal cathode while passing an electric current through the cathode to produce a plasma of fine catalyst particles which are deposited on a porous carbon substrate, and a feedstock gas containing a source of carbon is passed over the substrate to cause a reaction between the catalyst and the carbon source resulting in the formation of carbon nanotubes.
摘要:
A catalyst precursor comprising (A) a microporous support, (B) a non-noble metal precursor, and (C) a pore-filler, wherein the micropores of the microporous support are filled with the pore-filler and the non-noble metal precursor so that the micropore surface area of the catalyst precursor is substantially smaller than the micropore surface area of the support when the pore-filler and the non-noble metal precursor are absent is provided. Also, a catalyst comprising the above catalyst precursor, wherein the catalyst precursor has been pyrolysed so that the micropore surface area of the catalyst is substantially larger than the micropore surface area of catalyst precursor, with the proviso that the pyrolysis is performed in the presence of a gas that is a nitrogen precursor when the microporous support, the non-noble metal precursor and the pore-filler are not nitrogen precursors is also provided. Methods of producing the catalyst precursor and the catalyst are provided.