Abstract:
A laser pump cavity apparatus with integral concentrator provides uniform gain and high absorption efficiency. The apparatus has a doped solid-state laser medium, a concentrator which has a top cladding layer formed on the top surface of the doped laser medium having a cylindrical focusing surface, a bottom cladding layer formed on the bottom surface of the doped laser crystal having a cylindrical focusing surface, and edge cladding layers formed on the side surfaces of the doped laser medium. Cold plates, each of which also preferably has one cylindrical surface of substantially identical shape, are placed in thermal contact with the cylindrical focusing surfaces of the top and bottom cladding layers to absorb heat. The cylindrical focusing surfaces preferably have hyperbolic or quasi-hyperbolic shape. The laser pump cavity apparatus is preferably edge-pumped with several laser diode arrays focused toward the line foci of the cylindrical focusing surfaces in directions transverse to a laser beam axis.
Abstract:
A multi-pass, integrating diode pump cavity for an Er,Yb:glass laser is provided. The diode pump cavity comprises two end members of undoped glass sandwiching a center section of glass of the same composition as that of the two end members but doped with erbium and ytterbium ions. The two end members are each provided with a curved outer surface, which is coated with a reflective coating. At least one of the curved surfaces includes a slit through the reflective coating for transmission of pump laser light from a pump diode laser bar into the cavity. The diode pump cavity is small, compact, efficient, and eye-safe.
Abstract:
An optical system is described herein which has a compact, all reflective design that has multiple fields of view for imaging an object. The optical system also has identical viewing directions and can have several different configurations for adding laser range finding and designating components.
Abstract:
Portable, lightweight, compact, eye-safe, battery-operated laser range finder and digital compass assembly, mountable onto a personal weapon or aiming device, to accurately measure distance, azimuth and elevation angle of a target and increase the accuracy and probability of the hit. The laser range finder and digital compass assembly has a laser transmitter for transmitting an output laser beam having a wavelength in the range of 1.0 to 1.1 microns, an OPO converter for converting the output laser beam to an eye-safe range between 1.5 and 2.2 microns whose time of travel to and from an external target is measured to obtain the range, an expander for expanding the converted output laser beam, a detector for receiving a returned laser beam reflected from the external target and for producing a signal related to the time interval between the output pump beam and the returned pump beam, a digital compass assembly, a microprocessor, and a device for boresighting the expander with the external target, operatively connected to the laser transmitter. The device is placed in a housing adapted for mounting the device onto the personal weapon or aiming device. The laser transmitter is a flashlamp-pumped, battery-operated pump laser.
Abstract:
An optical system is described herein which has a compact, all reflective design that has multiple fields of view for imaging an object. The optical system also has identical viewing directions and can have several different configurations for adding laser range finding and designating components.
Abstract:
An optical system is described herein which has a compact, all reflective design that has multiple fields of view for imaging an object. The optical system also has identical viewing directions and can have several different configurations for adding laser range finding and designating components.