Abstract:
Described is a directed energy system that has a compact and modular configuration and that enables movement/assembly by a two-user team. The directed energy system includes one or more high-power laser sources that house one or more high-power fiber amplifiers, a beam combiner optically coupled to the one or more high-power laser sources, a beam director coupled to the beam combiner, a command and control module configurable to control operation of the one or more high-power fiber amplifiers. The directed energy system also includes a handheld controller with an integrated monitor, the handheld controller configurable to send control signals to the handheld controller module to control operation of the handheld controller module and a power module that includes batteries and power converters that provide electrical power required to run the directed energy system. Cooling of the directed energy system is performed only by ambient air contacting the directed energy system and without application of any external coolant medium to the system.
Abstract:
A femtosecond laser oscillator includes a 532 nm pump laser light, a Ti-doped sapphire, a laser resonator, and a dispersion compensation element, etc. The 532 nm pump laser light is radiated via a pump laser light guide device to the Ti-doped sapphire and generates stimulated radiation, the stimulated radiation light oscillates back and forth in the laser resonator and thereby is amplified, and continuous light is outputted. The dispersion compensation element is disposed in the resonator to compensate the dispersion of the outputted laser light resulted from oscillation of the laser light in the resonator to attain a mode locking condition. The mode locking means of the laser against disturbance is implemented in a form of return light outside the resonator, specifically, the emitted continuous light is returned to a femtosecond laser partially and thereby mode locking is achieved, and output of femtosecond pulses is realized.
Abstract:
A near-field electron laser includes a light source and a sealed container. The interior of the sealed container is filled with an electron gas, the light source produces incident light, under the irradiation of the incident light, electrons will be forced to vibrate, and emit secondary electromagnetic waves, so that the vibrating electrons are in the near-field of each other; the incident light causes an attractive force to be produced among the vibrating electrons, and under the action of the electric field intensity of the incident light and the attractive force, the electrons will vibrate in the same radial straight line and in the same direction, and have a constant frequency, amplitude, and phase difference; the interference effects of the radiation of the vibrating electrons are used to obtain a stronger directionality and intensity to form a laser light.
Abstract:
Aspects are generally directed to receivers and methods for actively demodulating optical signals. In one example, a receiver includes an optical resonator to receive an optical signal, the optical resonator including an active optical medium interposed between first and second semi-reflective surfaces, where the active optical medium is configured to accumulate resonant optical signal energy inside the optical resonator based on the received optical signal, the second semi-reflective surface is positioned to emit output optical signal energy, and the optical resonator is configured to disturb the output optical signal energy in response to a variation in the received optical signal. The receiver may further include a detector configured to detect the disturbance in the output optical signal energy, and a pump source coupled to the active optical medium to excite the active optical medium to generate an optical gain in the received optical signal.
Abstract:
Disclosed are methods and apparatus for generating a sub-200 nm continuous wave (cw) laser. A laser apparatus includes a chamber for receiving at least a rare gas or rare gas mixtures and a pump laser source for generating at least one cw pump laser focused in the chamber for generating at least one laser-sustained plasma in the chamber. The laser apparatus further includes a system for forming an optical cavity in which the at least one laser-sustained plasma serves as an excitation source for producing at least one cw laser having a wavelength that is below about 200 nm. In one aspect, the at least one laser-sustained plasma has a shape that substantially matches a shape of the optical cavity.
Abstract:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
Abstract:
Systems and methods that accept the emitted radiant power from such a combined diode laser structure (laser bar stack) and efficiently direct essentially all of it into the pump cladding of a double-clad fiber amplifier, such that the radiant power will then be absorbed by a rare-earth doped core in the active fiber.
Abstract:
A system for optically inspection one or more samples includes a sample stage, a laser system configured for illuminating a portion of the surface of the one or more samples disposed on the sample stage, and a detector configured to receive at least a portion of illumination reflected from the surface of the sample. The laser system includes an NLO crystal annealed within a selected temperature range. In addition, the NLO crystal is passivated with at least one of hydrogen, deuterium, a hydrogen-containing compound or a deuterium-containing compound to a selected passivation level. Further, the laser system includes a light source configured to generate light of a selected wavelength. The light source is configured to transmit light through the NLO crystal. The laser system includes a crystal housing unit configured to house the NLO crystal.
Abstract:
A system for optically inspection one or more samples includes a sample stage, a laser system configured for illuminating a portion of the surface of the one or more samples disposed on the sample stage, and a detector configured to receive at least a portion of illumination reflected from the surface of the sample. The laser system includes an NLO crystal annealed within a selected temperature range. In addition, the NLO crystal is passivated with at least one of hydrogen, deuterium, a hydrogen-containing compound or a deuterium-containing compound to a selected passivation level. Further, the laser system includes a light source configured to generate light of a selected wavelength. The light source is configured to transmit light through the NLO crystal. The laser system includes a crystal housing unit configured to house the NLO crystal.
Abstract:
The present invention provides a photorefractive hybrid cell including a window and a gain media disposed adjacent the window. The gain media includes nanoparticles therein. The window includes a material that forms a space-charge field. The gain media includes a material having refractive index properties that depend on an electric field. The nanoparticles include a coating which may include birefringent or polar molecules, other nanoparticles, organic material, or inorganic material.