Abstract:
A process for the production of at least one analytical device is disclosed. The analytical device comprises at least one capillary element. The process comprises providing at least one carrier layer; providing at least one spacer layer; applying the spacer layer on top of the carrier layer; providing at least one cover layer; and applying the cover layer on top of the spacer layer. The process further comprises at least one cutting step. At least one capillary channel of the capillary element is cut out from the spacer layer. The cutting step is performed by using at least two cutting tools. The cutting tools complement one another to form a contour of the capillary channel.
Abstract:
A process for the production of at least one analytical device is disclosed. The analytical device comprises at least one capillary element. The process comprises providing at least one carrier layer; providing at least one spacer layer; applying the spacer layer on top of the carrier layer; providing at least one cover layer; and applying the cover layer on top of the spacer layer. The process further comprises at least one cutting step. At least one capillary channel of the capillary element is cut out from the spacer layer. The cutting step is performed by using at least two cutting tools. The cutting tools complement one another to form a contour of the capillary channel.
Abstract:
The test elements are provided that are adapted to detect at least one analyte in a sample. At least some of the test elements are provided with a defect marking which contains information about defectiveness of the test elements. The test elements include at least one radiation-sensitive material. The test elements are exposed to at least one radiation, the radiation being adapted to induce marking in the form of at least one optically detectable change in the radiation-sensitive material.