摘要:
Hazard detection is simplified by converting a conditional instruction, operative to perform an operation if a condition is satisfied, into an emissary instruction operative to evaluate the condition and an unconditional base instruction operative to perform the operation. The emissary instruction is executed, while the base instruction is halted. The emissary instruction evaluates the condition and reports the condition evaluation back to the base instruction. Based on the condition evaluation, the base instruction is either launched into the pipeline for execution, or it is discarded (or a NOP, or null instruction, substituted for it). In either case, the dependencies of following instructions may be resolved.
摘要:
A fixed number of variable-length instructions are stored in each line of an instruction cache. The variable-length instructions are aligned along predetermined boundaries. Since the length of each instruction in the line, and hence the span of memory the instructions occupy, is not known, the address of the next following instruction is calculated and stored with the cache line. Ascertaining the instruction boundaries, aligning the instructions, and calculating the next fetch address are performed in a predecoder prior to placing the instructions in the cache.
摘要:
In a pipelined processor where instructions are pre-decoded prior to being stored in a cache, an incorrectly pre-decoded instruction is detected during execution in the pipeline. The corresponding instruction is invalidated in the cache, and the instruction is forced to evaluate as a branch instruction. In particular, the branch instruction is evaluated as “mispredicted not taken” with a branch target address of the incorrectly pre-decoded instruction's address. This, with the invalidated cache line, causes the incorrectly pre-decoded instruction to be re-fetched from memory with a precise address. The re-fetched instruction is then correctly pre-decoded, written to the cache, and executed.
摘要:
A microprocessor includes two branch history tables, and is configured to use a first one of the branch history tables for predicting branch instructions that are hits in a branch target cache, and to use a second one of the branch history tables for predicting branch instructions that are misses in the branch target cache. As such, the first branch history table is configured to have an access speed matched to that of the branch target cache, so that its prediction information is timely available relative to branch target cache hit detection, which may happen early in the microprocessor's instruction pipeline. The second branch history table thus need only be as fast as is required for providing timely prediction information in association with recognizing branch target cache misses as branch instructions, such as at the instruction decode stage(s) of the instruction pipeline.
摘要:
A processor includes a return stack circuit used for predicting procedure return addresses for instruction pre-fetching, wherein a return stack controller determines the number of return levels associated with a given return instruction, and pops that number of return addresses from the return stack. Popping multiple return addresses from the return stack permits the processor to pre-fetch the return address of the original calling procedure in a chain of successive procedure calls. In one embodiment, the return stack controller reads the number of return levels from a value embedded in the return instruction. A complementary compiler calculates the return level values for given return instructions and embeds those values in them at compile-time. In another embodiment, the return stack circuit dynamically tracks the number of return levels by counting the procedure calls (branches) in a chain of successive procedure calls.
摘要:
A processor includes a conditional branch instruction prediction mechanism that generates weighted branch prediction values. For weakly weighted predictions, which tend to be less accurate than strongly weighted predictions, the power associating with speculatively filling and subsequently flushing the cache is saved by halting instruction prefetching. Instruction fetching continues when the branch condition is evaluated in the pipeline and the actual next address is known. Alternatively, prefetching may continue out of a cache. To avoid displacing good cache data with instructions prefetched based on a mispredicted branch, prefetching may be halted in response to a weakly weighted prediction in the event of a cache miss.
摘要:
A method of managing cache partitions provides a first pointer for higher priority writes and a second pointer for lower priority writes, and uses the first pointer to delimit the lower priority writes. For example, locked writes have greater priority than unlocked writes, and a first pointer may be used for locked writes, and a second pointer may be used for unlocked writes. The first pointer is advanced responsive to making locked writes, and its advancement thus defines a locked region and an unlocked region. The second pointer is advanced responsive to making unlocked writes. The second pointer also is advanced (or retreated) as needed to prevent it from pointing to locations already traversed by the first pointer. Thus, the pointer delimits the unlocked region and allows the locked region to grow at the expense of the unlocked region.
摘要:
A processor includes a conditional branch instruction prediction mechanism that generates weighted branch prediction values. For weakly weighted predictions, which tend to be less accurate than strongly weighted predictions, the power associating with speculatively filling and subsequently flushing the cache is saved by halting instruction prefetching. Instruction fetching continues when the branch condition is evaluated in the pipeline and the actual next address is known. Alternatively, prefetching may continue out of a cache. To avoid displacing good cache data with instructions prefetched based on a mispredicted branch, prefetching may be halted in response to a weakly weighted prediction in the event of a cache miss.
摘要:
Techniques for ensuring a synchronized predecoding of an instruction string are disclosed. The instruction string contains instructions from a variable length instruction set and embedded data. One technique includes defining a granule to be equal to the smallest length instruction in the instruction set and defining the number of granules that compose the longest length instruction in the instruction set to be MAX. The technique further includes determining the end of an embedded data segment, when a program is compiled or assembled into the instruction string and inserting a padding of length, MAX−1, into the instruction string to the end of the embedded data. Upon predecoding of the padded instruction string, a predecoder maintains synchronization with the instructions in the padded instruction string even if embedded data is coincidentally encoded to resemble an existing instruction in the variable length instruction set.
摘要:
A conditional instruction architected to receive one or more operands as inputs, to output to a target the result of an operation performed on the operands if a condition is satisfied, and to not provide an output if the condition is not satisfied, is executed so that it unconditionally provides an output to the target. The conditional instruction obtains the prior value of the target (that is, the value produced by the most recent instruction preceding the conditional instruction that updated that target). The condition is evaluated. If the condition is satisfied, an operation is performed and the result of the operation output to the target. If the condition is not satisfied, the prior value is output to the target. Subsequent instructions may rely on the target as an operand source (whether written to a register or forwarded to the instruction), prior to the condition evaluation.