摘要:
Methods and systems for thermal printing of thermally printable photonic crystal materials and assemblies. The photonic crystal materials and assemblies are responsive to thermal stimuli, wherein temperatures above a thermal threshold results in an optically detectable change in the appearance of the materials and assemblies. Heat is selectively applied to one or more portions of the materials and assemblies, in order to thermally print a graphic onto the materials and assemblies.
摘要:
Methods and systems for thermal printing of thermally printable photonic crystal materials and assemblies. The photonic crystal materials and assemblies are responsive to thermal stimuli, wherein temperatures above a thermal threshold results in an optically detectable change in the appearance of the materials and assemblies. Heat is selectively applied to one or more portions of the materials and assemblies, in order to thermally print a graphic onto the materials and assemblies.
摘要:
A compressible photonic crystal comprising a polymer with an ordered array of voids, the photonic crystal having a reflectance in a first wavelength range for light incident to its incident surface and its opposing incident surface; wherein compression against at least a portion of at least one of the surfaces shifts the reflectance to a second wavelength range in at least that portion of that surface. The crystal may be used in authentication devices of various types.
摘要:
A security and/or authentication device comprising: a compressible photonic crystal having an ordered array of voids, the photonic crystal having a reflection peak, wherein compression against at least a portion photonic crystal results in a decrease of intensity of the reflection peak in at least that portion.
摘要:
A tunable photonic crystal device comprising: alternating layers of a first material and a second material, the alternating layers comprising a responsive material, the responsive material being responsive to an external stimulus, the alternating layers having a periodic difference in refractive indices giving rise to a first reflected wavelength; wherein, in response to the external stimulus, a change in the responsive material results in a reflected wavelength of the device shifting from the first reflected wavelength to a second reflected wavelength.
摘要:
This application describes a tunable photonic crystal device based on the electrical actuation of photonic crystal films. This device displays non-bleachable structural color, reflecting narrow bands of wavelengths tuned throughout the entire visible spectrum by expansion and contraction of the photonic crystal lattice
摘要:
The present invention discloses a widely wavelength tunable polychrome colloidal photonic crystal device whose optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimension, effected by a predetermined change in the electronic configuration of the composite material. In its preferred embodiment, the material is a composite in the form of a film or a patterned film or shape of any dimension or array of shapes of any dimension comprised of an organized array of microspheres in a matrix of a cross-linked metallopolymer network with a continuously variable redox state of charge and fluid content. The chemo-mechanical and electro-mechanical optical response of the colloidal photonic crystal-metallopolymer gel is exceptionally fast and reversible, attaining its fully swollen state from the dry shrunken state and vice versa on a sub-second time-scale. These composite materials can be inverted by removal of the constituent microspheres from the aforementioned colloidal photonic crystal metallopolymer-gel network to create a macroporous metallopolymer-gel network inverse colloidal photonic crystal film or patterned film or shape of any dimension optical Bragg diffraction stop bands and higher energy bands wavelength, width and intensity can be redox tuned in a continuous and fine, rapid and reversible, reproducible and predictable fashion and over a broad spectral range by a controlled expansion or contraction of the colloidal photonic lattice dimensions.
摘要:
A photonic crystal electrical property indicator for a battery comprising: an electrically conductive working electrode and an electrically conductive counter electrode; an electrically-responsive photonic crystal material in contact with at least one of said first and second electrically conductive electrodes; an ionically conductive electrolyte provided between the working and counter electrodes; and electrical conductors for connecting the indicator to terminals of the battery; wherein the photonic crystal material has a reflectance spectrum that is responsive to a change in at least one electrical property of the battery, thereby providing an optically detectable indication of the at least one electrical property of the battery.
摘要:
A tunable photonic crystal device comprising: alternating layers of a first material and a second material, the alternating layers comprising a responsive material, the responsive material being responsive to an external stimulus, the alternating layers having a periodic difference in refractive indices giving rise to a first reflected wavelength; wherein, in response to the external stimulus, a change in the responsive material results in a reflected wavelength of the device shifting from the first reflected wavelength to a second reflected wavelength.
摘要:
A photonic crystal device including a photonic crystal material and an activation surface. The photonic crystal material exhibits a first reflectance spectrum in an unactivated state, and, in response to mechanical stimulation, exhibits a second reflectance spectrum in an activated state. Application of a force at an activation portion of the activation surface offset from a material-supporting portion of the activation surface causes a deformation of the photonic crystal material sufficient to bring the photonic crystal material to the activated state.