摘要:
Differential feedback within multiple user, multiple access, and/or MIMO wireless communications. After full feedback signal(s) have been received by a communication device (e.g., one that is to be performing beamforming for use in subsequent signal transmission), differential feedback signal(s) are received. Those differential feedback signal(s) are employed to update the full feedback signal(s) thereby generating updated/modified full feedback signals. Over time, such updated/modified full feedback signals may subsequently be further updated based upon later received inferential feedback signal(s). Such differential feedback signaling takes advantage of time and/or frequency correlation in a communication channel to provide for reduced feedback overhead by feeding back a difference or delta (Δ) relative to a previous value. For example, instead of providing full feedback signals in each respective/successive communication, feedback overhead is reduced by providing a difference or delta (Δ).
摘要:
Differential feedback within multiple user, multiple access, and/or MIMO wireless communications. After full feedback signal(s) have been received by a communication device (e.g., one that is to be performing beamforming for use in subsequent signal transmission), differential feedback signal(s) are received. Those differential feedback signal(s) are employed to update the full feedback signal(s) thereby generating updated/modified full feedback signals. Over time, such updated/modified full feedback signals may subsequently be further updated based upon later received inferential feedback signal(s). Such differential feedback signaling takes advantage of time and/or frequency correlation in a communication channel to provide for reduced feedback overhead by feeding back a difference or delta (Δ) relative to a previous value. For example, instead of providing full feedback signals in each respective/successive communication, feedback overhead is reduced by providing a difference or delta (Δ).
摘要:
Device coexistence within single user, multiple user, multiple access, and/or MIMO wireless communications. Different respective communication devices operating using different respective communication channels having different respective channel bandwidths may be implemented within a given communication system. For example, different respective communication devices may belong to different basic services sets (BSSs) (e.g., a 1 MHz BSS operating using channel bandwidths of 1 MHz, and a 2 MHz BSS operating using channel bandwidths of 2 MHz). To effectuate coexistence among different respective devices operating using different respective channel bandwidths, devices but longing to the 1 MHz BSS monitor for and listen for 2 MHz wide communication activity, and those 1 MHz BSS communication devices defer to any detected communication activity on any portion of the 2 MHz channel.
摘要:
Frequency selective transmission within single user, multiple user, multiple access, and/or MIMO wireless communications. Adaptation among different respective sub-channels and/or channels is effectuated within a wireless communication system. Such a wireless communication system may include an access point (AP) and one or more wireless stations (STAs). The respective channelization employed for various communications between the devices within such a wireless communication system may be adapted based upon any of a number of considerations. For example, a receiver communication device may indicate to a transmitter communication device one or more preferred sub-channels and/or channels on which subsequent communications are to be performed. Alternatively, a transmitter communication device may employ such information provided from one or more receiver communication devices as one of multiple respective considerations regarding which one or more sub-channels and/or channels on which subsequent communications are to be performed.
摘要:
Frequency selective transmission within single user, multiple user, multiple access, and/or MIMO wireless communications. Adaptation among different respective sub-channels and/or channels is effectuated within a wireless communication system. Such a wireless communication system may include an access point (AP) and one or more wireless stations (STAs). The respective channelization employed for various communications between the devices within such a wireless communication system may be adapted based upon any of a number of considerations. For example, a receiver communication device may indicate to a transmitter communication device one or more preferred sub-channels and/or channels on which subsequent communications are to be performed. Alternatively, a transmitter communication device may employ such information provided from one or more receiver communication devices as one of multiple respective considerations regarding which one or more sub-channels and/or channels on which subsequent communications are to be performed.
摘要:
Device coexistence within single user, multiple user, multiple access, and/or MIMO wireless communications. Different respective communication devices operating using different respective communication channels having different respective channel bandwidths may be implemented within a given communication system. For example, different respective communication devices may belong to different basic services sets (BSSs) (e.g., a 1 MHz BSS operating using channel bandwidths of 1 MHz, and a 2 MHz BSS operating using channel bandwidths of 2 MHz). To effectuate coexistence among different respective devices operating using different respective channel bandwidths, devices but longing to the 1 MHz BSS monitor for and listen for 2 MHz wide communication activity, and those 1 MHz BSS communication devices defer to any detected communication activity on any portion of the 2 MHz channel.
摘要:
Downclocking and/or adaptive sub-carriers for single user, multiple user, multiple access, and/or MIMO wireless communications. Communication device operation within a wireless local area network (WLAN/WiFi) is effectuated in the frequency spectra typically associated with television broadcast channels. Operation is made on a secondary non-interfering basis to such television broadcast channels. Any desired channel bandwidth (e.g., 6 MHz, 7 MHz, 8 MHz, etc.) may be employed. Adaptation with respect to the number of data sub-carriers within different respective packets may be made in accordance with two or more respective operational modes. For example, modification of the number of data sub-carriers in different respective packets may be made to increase the signal bandwidth from a first band was to a second bandwidth. Also, appropriate frequency down-clocking of a first channel bandwidth may be performed to generate the desired channel bandwidth to be employed within an available television broadcast channel bandwidth.
摘要:
Methods and apparatus are described for mitigating intercell interference in wireless communication systems utilizing substantially the same operating frequency band across multiple neighboring coverage areas. The operating frequency band may be shared across multiple neighboring or otherwise adjacent cells, such as in a frequency reuse one configuration. The wireless communication system can synchronize one or more resource allocation regions or zones across the multiple base stations, and can coordinate a permutation type within each resource allocation zone. The base stations can coordinate a pilot configuration in each of a plurality of coordinated resource allocation regions. Subscriber stations can be assigned resources in a coordinated resource allocation region based on interference levels. A subscriber station can determine a channel estimate for each of multiple base stations in the coordinated resource allocation region to mitigate interference.
摘要:
In an orthogonal frequency division multiplex (OFDM) communication network, a node transmits an echo profile probe to other nodes in the network. The echo profile probe is a message that allows characterization of the unique echo profile through the communication channel between each node pair. The echo profile is used to calculate the cyclic prefix length needed for optimum communication from one node to the other.