摘要:
A material dispensing device delivers material directly into the ground. According to one embodiment of the material dispensing device, the device comprises an elongated hollow shaft, a receptacle, a helical flange and on or more openings formed in the shaft or helical flanges. The receptacle is disposed adjacent one end of the shaft for holding material. The receptacle is communicatively open to the shaft such that the material or a liquid-material mixture dissolved from at least a portion of the material can flow from the receptacle into the shaft. The helical flange is secured to the shaft. The shaft and helical flange are configured such that rotation of the shaft and flange causes the material dispensing device to be driven into the ground. The one or more openings formed in the shaft or helical flange disperse the material or the liquid-material mixture into the ground.
摘要:
The methods and apparatus taught herein provide an elongated spine support member integrated into or attached to a chair for providing improved back support. According to one embodiment of a chair, the chair comprises a seat, back and elongated spine support member. The back includes inner and outer sections. The inner section is spaced inwardly from opposite sides of the back and extends generally vertically through a substantial portion of the height of the back. The outer section extends along opposite sides of the inner section. The elongated spine support member is generally vertically extending and forms a part of the inner section of the back. The elongated spine support member is configured to engage and support at least two of the cervical, thoracic and lumbar regions of the vertebral column of a person seated in the chair.
摘要:
A method for creating a guardband that incorporates statistical models for test environment, system environment, tester-to-system offset and reliability into a model and then processes a final guardband by factoring manufacturing process variation and quality against yield loss.
摘要:
The invention provides micro-electromechanical switch (MEM) based designs for reducing the power consumption of logic blocks (e.g., latches) by isolating the logic blocks when they are non-operational. A power reduction circuit in accordance with the present invention comprises a logic block and at least one micro-electromechanical (MEM) switch for selectively disabling the logic block. MEM switches are provided for selectively: disconnecting the logic block from power; disconnecting the logic block from ground; providing a bypass line around the logic block; disconnecting an output of the logic block; and/or disconnecting an input of the logic block.
摘要:
An apparatus and method for dynamically allocating memory between inbound and outbound paths of a networking protocol handler so as to optimize the ratio of a given amount of memory between the inbound and outbound buffers is presented. Dedicated but sharable buffer memory is provided for both the inbound and outbound processors of a computer network. Buffer memory is managed so as to dynamically alter what portion of memory is used to receive and store incoming data packets or to transmit outgoing data packets. Use of the present invention reduces throttling of data rate transmissions and other memory access bottlenecks associated with conventional fixed-memory network systems.
摘要:
Micro-electromechanical switches (MEMS) are configured to form a data storage latch to reduce power consumption, to reduce the space used in an integrated circuit, and to improve performance of the integrated circuit. MEMS are implemented at the wiring layer connected to an integrated circuit and coupled to form a storage latch.
摘要:
An apparatus and method for dynamically allocating memory between inbound and outbound paths of a networking protocol handler so as to optimize the ratio of a given amount of memory between the inbound and outbound buffers is presented. Dedicated but sharable buffer memory is provided for both the inbound and outbound processors of a computer network. Buffer memory is managed so as to dynamically alter what portion of memory is used to receive and store incoming data packets or to transmit outgoing data packets. Use of the present invention reduces throttling of data rate transmissions and other memory access bottlenecks associated with conventional fixed-memory network systems.
摘要:
An apparatus and method for dynamically allocating memory between inbound and outbound paths of a networking protocol handler so as to optimize the ratio of a given amount of memory between the inbound and outbound buffers is presented. Dedicated but sharable buffer memory is provided for both the inbound and outbound processors of a computer network. Buffer memory is managed so as to dynamically alter what portion of memory is used to receive and store incoming data packets or to transmit outgoing data packets. Use of the present invention reduces throttling of data rate transmissions and other memory access bottlenecks associated with conventional fixed-memory network systems.
摘要:
An apparatus and method for dynamically allocating memory between inbound and outbound paths of a networking protocol handler so as to optimize the ratio of a given amount of memory between the inbound and outbound buffers is presented. Dedicated but sharable buffer memory is provided for both the inbound and outbound processors of a computer network. Buffer memory is managed so as to dynamically alter what portion of memory is used to receive and store incoming data packets or to transmit outgoing data packets. Use of the present invention reduces throttling of data rate transmissions and other memory access bottlenecks associated with conventional fixed-memory network systems.
摘要:
A design and burn-in technique that effectively reduces power consumption during burn-in for devices with high power consumption as a result of shrinking voltages, high instantaneous current, subthreshold leakage and high currents at stress conditions. Three methods of reducing power consumption during burn-in are disclosed in detail: (1) completely separate power grids, (2) isolated grids during burn-in, and (3) isolated grids for MTCMOS used during burn-in. Each technique provides a method of segmenting the power supply of a chip and controlling which segment of the chip is stressed based on which segment is ‘powered on’. Those segments not being stressed are ‘shutoff’ so as to reduce power consumption.