摘要:
A pressurized water nuclear reactor (PWNR) includes a core having a containment shield surrounding a reactor vessel having fuel assemblies that contain fuel rods filled with fuel pellets, and control rods, and a steam generator thermally coupled to the reactor vessel. A flow loop includes the steam generator, a turbine, and a condenser, and a pump for circulating a water-based heat transfer fluid in the loop. The heat transfer fluid includes a plurality of nanoparticles having at least one carbon allotrope or related carbon material dispersed therein, such as diamond nanoparticles.
摘要:
A pressurized water nuclear reactor (PWNR) 100 includes a core having a containment shield 105 surrounding a reactor vessel 110 having fuel assemblies that contain fuel rods filled with fuel pellets 115, and control rods 118, and a steam generator 120 thermally coupled to the reactor vessel 110. A flow loop includes the steam generator 120, a turbine 130, and a condenser 135, and a pump 140 for circulating a water-based heat transfer fluid 145 in the loop. The heat transfer fluid 145 includes a plurality of nanoparticles having at least one carbon allotrope or related carbon material dispersed therein, such as diamond nanoparticles.
摘要:
In accordance with the invention there are systems and methods of preparing surface enhanced Raman spectroscopy substrate and methods of enhanced detection of an analyte.
摘要:
A method for removing mercury from a fluid stream includes the steps of providing a porous composite material comprising a substrate and a plurality of catalyst and/or photocatalyst particles, and contacting substrate with a fluid stream. The porous composite material adsorbs and/or then oxidizes or reduces metallic species including elemental mercury. A fossil fuel fired power plant can include an emission control device comprising the porous composite material to filter flue gas to and thereby minimize mercury emissions into the environment.
摘要:
An apparatus for classifying a mixture of fine and coarse particles in a fluid stream by size or density comprises a housing, a boundary layer momentum transfer device, and an inlet flow control mechanism. The housing comprises an inlet, an interior chamber, and a fine particle outlet. The boundary layer momentum transfer device comprises a plurality of disks stacked in spaced, parallel relation in the interior chamber. The disks are rotatable about a disk axis. The disks have respective central openings cooperatively defining a plenum having a closed axial end and an opposing open axial end. The plenum communicates with spaces defined between each adjacent disk to cooperatively define a fine particle flow path from the interior chamber, through the spaces, through the plenum and the open axial end thereof, and to the fine particle outlet. The inlet flow control mechanism communicates with the interior chamber and provides an adjustable inlet flow path into the interior chamber. The housing can include a cylindrical, conical, and/or scroll-shaped profile.