Abstract:
A method and apparatus for separating purifying media from a treated fluid. The method includes transporting the purifying media and the treated fluid along a substantially horizontal direction while a substantial quantity of purifying media fall along a substantially vertical direction relative to the treated fluid to generate a concentration of purifying media below the treated fluid. The falling purifying media are collected while releasing the treated fluid so as to separate the purifying media from the treated fluid.
Abstract:
This disclosure describes systems, methods, and apparatus for separating and purifying components from mixtures and emulsions containing hydrocarbons, water, salt, and mineral solids. Key unit operations are thermal desorbing, hot filtering, direct contact condensing, solids leaching, evaporating, and salt precipitating. Preferred embodiments of the process and system use process-generated fuel, leach water, and hot combustion gas to conduct thermal desorption, solids leaching, and salt precipitating. Use of process generated streams for key unit operations greatly reduces the need for purchased utilities and contributes both to process efficiency and economy.
Abstract:
The present invention provides a low energy alternative to conventional thermal/evaporation processes for “zero liquid discharge” treatment of strong saline brines. The products of the process include a salt-free liquid and solid salt. In particular, an antisolvent can be mixed with liquids containing high total dissolved solids. The mixture can be chilled, whereby solid salt is precipitated and separated from the mixture at near ambient temperature leaving a mixed liquor. The antisolvent can be selected from a class of organic compounds that form solutions with salt brines that exhibit a critical solution temperature lower than a critical solution temperature of the salt brines alone. The mixed liquor can be heated to a temperature above its lower critical solution temperature to produce an antisolvent liquid phase for recycle to the process. Finally, a reduced salinity aqueous phase can be polished by reverse osmosis or other conventional technology to produce clean water for discharge or beneficial use.
Abstract:
Methods and apparatus for removing contaminants from liquid using a continuously circulating stream of purifying media are disclosed. In one embodiment the method includes mixing a regenerated purifying media with a contaminated liquid containing diverse contaminants; co-currently transporting the purifying media and the contaminated liquid in a mixed state; removing, using the purifying media, while co-currently transporting the purifying media and the contaminated liquid, contaminants from the contaminated liquid so as to produce a mixture of a decontaminated liquid and a contaminated purifying media; and separating contaminated purifying media from the decontaminated liquid. In addition, the contaminated purifying media is contacted in counter current fashion with a regenerant solution so as to produce a regenerated purifying media and the regenerated purifying media is returned to the mixing step, whereby the continuously circulating purifying media selectively removes contaminants from the liquid.
Abstract:
Methods and apparatus for removing contaminants from liquid using a continuously circulating stream of purifying media are disclosed. In one embodiment the method includes mixing a regenerated purifying media with a contaminated liquid containing diverse contaminants; co-currently transporting the purifying media and the contaminated liquid in a mixed state; removing, using the purifying media, while co-currently transporting the purifying media and the contaminated liquid, contaminants from the contaminated liquid so as to produce a mixture of a decontaminated liquid and a contaminated purifying media; and separating contaminated purifying media from the decontaminated liquid. In addition, the contaminated purifying media is contacted in counter current fashion with a regenerant solution so as to produce a regenerated purifying media and the regenerated purifying media is returned to the mixing step, whereby the continuously circulating purifying media selectively removes contaminants from the liquid.
Abstract:
The present invention provides a low energy alternative to conventional thermal/evaporation processes for “zero liquid discharge” treatment of strong saline brines. The products of the process include a salt-free liquid and solid salt. In particular, an antisolvent can be mixed with liquids containing high total dissolved solids. The mixture can be chilled, whereby solid salt is precipitated and separated from the mixture at near ambient temperature leaving a mixed liquor. The antisolvent can be selected from a class of organic compounds that form solutions with salt brines that exhibit a critical solution temperature lower than a critical solution temperature of the salt brines alone. The mixed liquor can be heated to a temperature above its lower critical solution temperature to produce an antisolvent liquid phase for recycle to the process. Finally, a reduced salinity aqueous phase can be polished by reverse osmosis or other conventional technology to produce clean water for discharge or beneficial use.
Abstract:
A process is provided for treating an aqueous stream of nonradioactive hazardous waste containing inorganic compounds capable of forming oxides upon thermal treatment in which at least one of the oxides is a glass former, glass intermediate or a glass modifier. The process comprises (a) introducing the waste stream into a thermal treatment zone; (b) heating the inorganic compounds in the thermal treatment zone to convert the compounds to the corresponding inorganic oxides and form a melt solution while vaporizing volatile components to form an off-gas; (c) scrubbing the off-gas to provide a ventable flue gas and a liquid condensate with the condensate being recycled to the thermal treatment zone; and (d) removing the melt solution from said thermal treatment zone and cooling the melt solution to form a nonleachable glass containing the hazardous waste. An apparatus particularly adapted to practice the process is also provided.