摘要:
An electroluminescent display includes a display substrate, a plurality of patterned first electrodes formed over the display substrate, one or more layers of light-emitting material formed over the plurality of first electrodes, at least one second electrode formed over the one or more layers of light-emitting material, and a plurality of chiplets. Each chiplet is electrically connected to a first electrode. Each chiplet further includes a light detector and a light emitter separate from the one-or-more layers of light-emitting material connected to the chiplet circuitry. The chiplet circuitry includes a modulating circuit for modulating light emitted by the light emitter and a demodulating circuit for demodulating light detected by the light detector so that light emitted by the light emitter of a first chiplet is received by the light detector of a second chiplet.
摘要:
A method of compensating the uniformity of an OLED device that includes measuring the performance of light-emitting elements at three or more different input intensity values. Calculation of parameters a and b, for each light-emitting element, is performed to minimize the sum, for each of the three or more input intensity values i, of a minimization function: ƒ(yi,i,(yi−g(yi,i,a,b))2) where yi is the performance value of the light-emitting element or groups of elements in response to an input intensity value i, and g is a function that is a simplified representation of the performance of the one or more light-emitting elements or groups of elements. A linear transformation function is formed as: ƒ(i)=mi+k, where m and k depend upon the function g, and the parameters a and b.
摘要翻译:一种补偿OLED器件的均匀性的方法,其包括以三个或更多个不同的输入强度值测量发光元件的性能。 执行对于每个发光元件的参数a和b的计算,以使最小化函数的三个或更多个输入强度值i中的每一个最小化:ƒ(yi,i,(yi-g(yi ,i,a,b))2)其中yi是响应于输入强度值i的发光元件或元件组的性能值,并且g是作为输入强度值i的性能的简化表示的函数 一个或多个发光元件或元件组。 线性变换函数形成为:ƒ(i)= mi + k,其中m和k取决于函数g,以及参数a和b。
摘要:
A method of compensating uniformity of an OLED device, having a plurality of light-emitting elements, including providing the OLED display; and measuring the performance of one or more light-emitting elements at three or more different code values. At least two different groups of code values are formed from the three or more code values, while calculating a linear transformation for converting an input signal to a compensated signal from the performance measurements for each of the groups. Subsequently, the difference between the measured performance and compensated signal is calculated over the range of code values for each of the groups; while the linear transformation, having a preferred difference, is selected. Additionally an input signal is received and employed with the selected linear transformation to calculate a compensated signal to drive the OLED display.
摘要:
A display securely decrypts an encrypted image signal. Pixels are disposed between the display substrate and cover in a display area, and provide light to a user in response to a drive signal. Control chiplets disposed between the display substrate and cover in the display area are each connected to one or more of the plurality of pixels. Each receives a respective control signal and produce respective drive signal(s) for the connected pixel(s). A decryption chiplet is disposed between the display substrate and cover. It includes means for receiving the encrypted image signal and a decryptor for decrypting the encrypted image signal to produce a respective control signal for each of the control chiplets.
摘要:
A method of compensating the uniformity of an EL device that includes measuring the performance of light-emitting elements at three or more different input intensity values. Calculation of parameters a and b, for each light-emitting element, is performed to minimize the sum, for each of the three or more input intensity values i, of a minimization function: f(yi,i,(yi−g(yi,i,a,b))2) where yi is the performance value of the light-emitting element or groups of elements in response to an input intensity value i, and g is a function that is a simplified representation of the performance of the one or more light-emitting elements or groups of elements. A linear transformation function is formed as: f(i)=mi+k, where m and k depend upon the function g, and the parameters a and b.
摘要:
A method of compensating uniformity of an EL device, having a plurality of light-emitting elements, including providing the EL display; and measuring the performance of one or more light-emitting elements at three or more different code values. At least two different groups of code values are formed from the three or more code values, while calculating a linear transformation for converting an input signal to a compensated signal from the performance measurements for each of the groups. Subsequently, the difference between the measured performance and compensated signal is calculated over the range of code values for each of the groups; while the linear transformation, having a preferred difference, is selected. Additionally an input signal is received and employed with the selected linear transformation to calculate a compensated signal to drive the EL display.
摘要:
A method of compensating uniformity of an OLED device, having a plurality of light-emitting elements, including providing the OLED display; and measuring the performance of one or more light-emitting elements at three or more different code values. At least two different groups of code values are formed from the three or more code values, while calculating a linear transformation for converting an input signal to a compensated signal from the performance measurements for each of the groups. Subsequently, the difference between the measured performance and compensated signal is calculated over the range of code values for each of the groups; while the linear transformation, having a preferred difference, is selected. Additionally an input signal is received and employed with the selected linear transformation to calculate a compensated signal to drive the OLED display.
摘要:
A method of compensating the uniformity of an OLED device that includes measuring the performance of light-emitting elements at three or more different input intensity values. Calculation of parameters a and b, for each light-emitting element, is performed to minimize the sum, for each of the three or more input intensity values i, of a minimization function: ƒ(yi,i,(yi−g(yi,i,a,b))2) where yi is the performance value of the light-emitting element or groups of elements in response to an input intensity value i, and g is a function that is a simplified representation of the performance of the one or more light-emitting elements or groups of elements. A linear transformation function is formed as: ƒ(i)=mi+k, where m and k depend upon the function g, and the parameters a and b.
摘要:
An electroluminescent display includes a display substrate, a plurality of patterned first electrodes formed over the display substrate, one or more layers of light-emitting material formed over the plurality of first electrodes, at least one second electrode formed over the one or more layers of light-emitting material, and a plurality of chiplets. Each chiplet is electrically connected to a first electrode. Each chiplet further includes a light detector and a light emitter separate from the one-or-more layers of light-emitting material connected to the chiplet circuitry. The chiplet circuitry includes a modulating circuit for modulating light emitted by the light emitter and a demodulating circuit for demodulating light detected by the light detector so that light emitted by the light emitter of a first chiplet is received by the light detector of a second chiplet.
摘要:
A display device responsive to a controller, including a substrate having a display area; a two-dimensional array of pixels formed on the substrate in the display area, each pixel comprising an optical element and a driving circuit for controlling the optical element in response to selected pixel information; a two-dimensional array of selection circuits located in the display area, each associated with one or more pixels, for selecting pixel information provided by the controller, wherein each selection circuit receives the provided pixel information, selects pixel information corresponding to its associated pixel(s) in response to the provided pixel information, and provides the selected pixel information to the corresponding driving circuit(s); and a parallel signal conductor electrically connecting the selection circuits in common for transmitting pixel information provided by the controller to each of the selection circuits.