摘要:
An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
摘要:
An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
摘要:
An acoustic driver assembly for use with any of a variety of cavitation chamber configurations, including spherical and cylindrical chambers as well as chambers that include at least one flat coupling surface. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass. The end surface of the head mass is shaped to limit the contact area between the head mass of the driver assembly and the cavitation chamber to which the driver is attached, the contact area being limited to a centrally located contact region. The area of contact is controlled by limiting its size and/or shaping its surface.
摘要:
An hourglass-shaped cavitation chamber is provided. The chamber is comprised of two large cylindrical regions separated by a smaller cylindrical region. Coupling the regions are two transitional sections which are preferably smooth and curved. Although the chamber is preferably fabricated from a machinable material, such as a metal, it can also be fabricated from a fragile material, such as a glass. An acoustic driver assembly is incorporated within the chamber wall at one end of the cavitation chamber. The driver can be threadably coupled to the chamber or attached using an epoxy, diffusion bonding, brazing or welding. O-rings or other seals can be used to seal the driver to the chamber. The head surface of the driver assembly can be flush, recessed, or extended from the internal chamber surface. The head surface of the driver assembly can be flat or shaped. If desired, a second acoustic driver assembly can be incorporated within the chamber wall at the other end of the cavitation chamber. Preferably the driver or drivers are attached such that their central axis is coaxial with the central axis of the cavitation chamber. Coupling conduits which can be used to fill/drain the chamber as well as couple the chamber to a degassing and/or circulatory system can be attached to one, or both, ends of the chamber. When used, preferably the conduit or conduits are attached off-axis.
摘要:
An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is adjacent to the external surface of the chamber is non-flat and has a spherical curvature less than the spherical curvature of the external surface of the chamber, thus providing a ring of contact between the acoustic driver and the cavitation chamber. In at least one embodiment, a void filling material is interposed between one or more pairs of adjacent surfaces of the driver assembly and/or the driver assembly and the exterior surface of the cavitation chamber.
摘要:
An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is adjacent to the external surface of the chamber has a spherical curvature greater than the spherical curvature of the external surface of the chamber, thus providing a ring of contact between the acoustic driver and the cavitation chamber. The area of the contact ring is increased in one embodiment by chamfering a portion of the head mass such that the chamfered surface has the same curvature as the external surface of the chamber. In at least one embodiment, a void filling material is interposed between one or more pairs of adjacent surfaces of the driver assembly and/or the driver assembly and the exterior surface of the cavitation chamber.
摘要:
An acoustic driver horn that is integral to a wall of a cavitation chamber is provided. The horn design is applicable to any of a variety of cavitation chamber configurations, including spherical, cylindrical, and rectangular chambers. Although a variety of driver assemblies can be coupled to the driver horn, preferably the acoustic driver assembly includes a head mass, a tail mass, and at least one transducer, typically a piezoelectric transducer, and preferably a pair of piezoelectric transducers. A groove in the cavitation chamber wall defines the driver horn and separates it from the remaining portion of the cavitation chamber wall. Due to the thinning of the wall around the horn, the driver that is attached to the horn is able to more effectively couple its energy into the cavitation fluid within the chamber.
摘要:
A port assembly for use with a single piece cavitation chamber, typically a spherical chamber is provided. The port assembly includes a cone-shaped port, a cone-shaped mounting ring and a central member mounted within the mounting ring. The mounting ring is located within the chamber prior to the final assembly of the chamber itself, i.e., at a time in which the chamber is comprised of multiple pieces. After the final assembly of the chamber is complete, a central member such as a window, plug, gas feed-thru, liquid feed-thru, mechanical feed-thru or sensor assembly is placed within the chamber. The mounting ring is then pulled into place within the cone-shaped port, followed by the central member. To expedite assembly, specialized tools can be used to pull the mounting ring and the central member into place.
摘要:
An acoustic driver assembly for use with a spherical cavitation chamber is provided. The acoustic driver assembly includes at least one transducer, a head mass and a tail mass, coupled together with a centrally located threaded means (e.g., all thread, bolt, etc.). The driver assembly is either attached to the exterior surface of the spherical cavitation chamber with the same threaded means, a different threaded means, or a more permanent coupling means such as brazing, diffusion bonding or epoxy. In at least one embodiment, the transducer is comprised of a pair of piezo-electric transducers, preferably with the adjacent surfaces of the piezo-electric transducers having the same polarity. The surface of the head mass that is in contact with the external surface of the chamber has a spherical curvature equivalent to the spherical curvature of the external surface of the chamber, thus providing maximum surface contact between the driver assembly and the chamber. In at least one embodiment, a void filling material is interposed between one or more pairs of adjacent surfaces of the driver assembly and/or the driver assembly and the exterior surface of the cavitation chamber.
摘要:
An acoustic driver assembly that is adjustably coupled to a cavitation chamber is provided. The cavitation chamber can be selected from any of a variety of cavitation chamber configurations including spherical, cylindrical, and rectangular chambers. The acoustic driver assembly includes a head mass, a tail mass, and at least one transducer. A portion of the head mass of the acoustic driver assembly passes through an acoustic driver port located within a portion of the cavitation chamber. The head mass is sealed to the inside of the acoustic driver port with at least one o-ring, static packing seal, or dynamic packing seal. The tail mass is either rigidly coupled to the cavitation chamber or non-rigidly coupled to the cavitation chamber. Compressible members can be used to further minimize the dampening effects associated with coupling the tail mass to the cavitation chamber.